Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease.

Neurobiol Aging

Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University of Goettingen, von-Siebold-Str. 5, 37075 Goettingen, Germany.

Published: May 2010

Inflammatory processes are considered to play an important role in the progression of neurodegenerative changes in Alzheimer's disease (AD). In the present study, we performed a systematic expression analysis of various inflammatory and oxidative stress markers in pre-symptomatic and diseased APP/PS1KI mice. This mouse model has been previously shown to harbor severe pathological alterations, including behavioral deficits, axonal degeneration and hippocampal neuron loss starting at the age of 6 months. While the expression levels of most markers remained unchanged in 2-month-old APP/PS1KI mice, at the age of 6 months different astro- and microglia markers including GFAP, Cathepsin D, members of the Toll-like receptor (Tlr) family, TGFbeta-1 and osteopontin were up-regulated. In addition, oxidative stress markers, including the metallothioneins, were also significantly elevated at that time point. As expected, both brain and spinal cord were affected, the latter showing early activation of GFAP-positive astrocytes and Iba1-positive microglia in white matter fiber tracts, which might contribute to the previously reported axonal defects in this mouse model. These data add further evidence to the assumption that inflammatory processes are tightly associated with axonal degeneration and neuron loss, as is evident in the APP/PS1KI mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2008.06.011DOI Listing

Publication Analysis

Top Keywords

mouse model
16
tightly associated
8
brain spinal
8
spinal cord
8
app/ps1ki mouse
8
alzheimer's disease
8
inflammatory processes
8
oxidative stress
8
stress markers
8
app/ps1ki mice
8

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.

View Article and Find Full Text PDF

Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.

View Article and Find Full Text PDF

Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!