The detailed distribution of mercury was studied in sediments and porewaters of two freshwater lakes, which were selected because of the contrasting conditions they present at their respective sediment-water interface (SWI). One lake is characterized by a SWI that remains oxic all year long whereas the other one shows a clear seasonal variation with the evolution of strongly anoxic conditions through the summer season. The results of the study clearly identify the importance of redox conditions on the geochemical behaviour of Hg at the SWI of both lakes but a very limited influence of an oxidized layer enriched in Fe and Mn oxyhydroxides at the top of the sediment of the oxic lake. In both lakes, a competitive effect on the cycling and mobility of the element was observed between natural organic matter and amorphous or organo-sulfide compounds. The proportion of Hg associated to natural organic matter in sediments showed a general increase with sediment depth. A fraction containing elemental Hg and Hg suspected to be bound to iron sulfides and organo-sulfides constituted the other major fraction of solid Hg in the sediments of both lakes. This second pool of Hg was generally larger at the top of the sediment where the production of dissolved sulfides is usually more detectable and it decreases with depth, suggesting that the metal is partially transferred from one pool being the sulfides including amorphous FeS and organo-sulfides to the organic matter pool. Methyl Hg represented less than 1% of the total Hg in sediments of both lakes. Our results obtained at different times of the summer season from two lakes contrasted by their SWI emphasize the competitive or alternating role played by dissolved and solid natural organic matter and sulfides on the fate of Hg in freshwater systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2008.06.034DOI Listing

Publication Analysis

Top Keywords

organic matter
16
natural organic
12
distribution mercury
8
summer season
8
top sediment
8
sediments lakes
8
lakes
6
organic
5
sediments
5
competitive role
4

Similar Publications

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant.

Chemosphere

December 2024

Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:

Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.

View Article and Find Full Text PDF

Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.

View Article and Find Full Text PDF

Important ecophysiological roles of Nocardiopsis in lignocellulose degradation during aerobic compost with humic acid addition.

J Environ Manage

December 2024

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:

Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism.

View Article and Find Full Text PDF

Mildly acidic pH boosts up CO conversion to isobutyrate in H driven gas fermentation system.

Water Res

December 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:

As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!