Transfer of brominated flame retardants from components into dust inside television cabinets.

Chemosphere

Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.

Published: September 2008

Television (TV) set components are highly flame resistant, with their added brominated compounds such as polybrominated diphenyl ethers (PBDEs). These compounds might be released indoors via dust, which presents a potential exposure pathway for humans in the home environment. In this study, we collected dust from inside TV sets and TV set component samples (parts of housing front cabinets, rear cabinets and circuit boards) of five sets used in Japan. We measured BFRs (i.e., PBDEs, tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs)) and polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/DFs). Analytical results of the TV components showed that the concentrations of PBDEs, TBBPA and PBDFs (48,000 microg/g, 19,000 microg/g and 9600 ng/g as mean values, respectively) were all highest in the rear cabinets. The SigmaPBDD concentrations (460 ng/g as a mean value) detected were highest in the circuit board samples. The respective SigmaPBDE and SigmaPBDF concentrations in the dust samples were 67-500 microg/g (mean 300 microg/g) and 180-650 ng/g (mean 410 ng/g). Such concentrations were 2-3 orders of magnitude higher than those previously reported for house dust samples, which suggests that the brominated compounds are transferred from TV components into dust. Comparison of congener patterns of the brominated compounds in the dust identified the components as the source of these BFRs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.06.032DOI Listing

Publication Analysis

Top Keywords

brominated compounds
12
components dust
8
dust inside
8
rear cabinets
8
dust samples
8
dust
7
components
5
transfer brominated
4
brominated flame
4
flame retardants
4

Similar Publications

Chemoenzymatic C,C-Bond Forming Cascades by Cryptic Vanadium Haloperoxidase Catalyzed Bromination.

Org Lett

December 2024

Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.

Inspired by natural cryptic halogenation in -bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial VHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis.

View Article and Find Full Text PDF

Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:

Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.

View Article and Find Full Text PDF

In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH(g)/MeOH reactions were carried out.

View Article and Find Full Text PDF

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management.

Toxicology

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.

Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!