Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three commercially available porcine-derived biologic meshes were implanted in an Old World primate abdominal wall resection repair model to compare biological outcome as a predictor of clinical efficacy. Tissues were explanted over a 6-month period and evaluated for gross pathology, wound healing strength, mesenchymal cellular repopulation, vascularity, and immune response. In vivo functional outcomes were correlated with in vitro profile for each material. Small intestinal submucosa-based implants demonstrated scar tissue formation and contraction, coincident with mesh pleating, and were characterized by immediate and significant cellular and humoral inflammatory responses. Porcine dermal-based grafts demonstrated significant graft pleating, minimal integration, and an absence of cellular repopulation and vascularization. However, a significant cellular immune response surrounded the grafts, coincident with poor initial wound healing strengths. In vivo observations for the three porcine-derived mesh products correlated with individual in vitro profiles, indicating an absence of characteristic biochemical markers and structural integrity. This correlation suggests that in vivo results observed for these mesh products are a direct consequence of specific manufacturing processes that yield modified collagen matrices. The resulting loss of biological and structural integrity elicits a foreign body response while hindering normal healing and tissue integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tea.2007.0317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!