Pentachlorophenol and other chlorinated phenols are substrates for human hydroxysteroid sulfotransferase hSULT2A1.

Chem Res Toxicol

DiVision of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA.

Published: August 2008

Pentachlorophenol (PCP) is a persistent chemical contaminant that has been extensively investigated in terms of its toxicology and metabolism. Similar to PCP, other chlorinated phenol derivatives are also widely present in the environment from various sources. Even though some of the chlorine-substituted phenols, and particularly PCP, are well-known inhibitors of phenol sulfotransferases (SULTs), these compounds have been shown to undergo sulfation in humans. To investigate the enzymatic basis for sulfation of PCP in humans, we have studied the potential for PCP as well as the mono-, di-, tri-, and tetra-chlorinated phenols to serve as substrates for human hydroxysteroid sulfotransferase, hSULT2A1. Our results show that all of these compounds are substrates for this isoform of sulfotransferase, and the highest rates of sulfation are obtained with PCP, trichlorophenols, and tetrachlorophenols. Much lower rates of sulfation were obtained with isomers of monochlorophenol and dichlorophenol as substrates for hSULT2A1. Thus, the sulfation of polychlorinated phenols catalyzed by hSULT2A1 may be a significant component of their metabolism in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2548291PMC
http://dx.doi.org/10.1021/tx800133dDOI Listing

Publication Analysis

Top Keywords

substrates human
8
human hydroxysteroid
8
hydroxysteroid sulfotransferase
8
sulfotransferase hsult2a1
8
sulfation pcp
8
rates sulfation
8
pcp
6
sulfation
5
pentachlorophenol chlorinated
4
phenols
4

Similar Publications

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production.

Appl Microbiol Biotechnol

January 2025

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.

Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!