Background: The effects of intestinal inflammation on the central neurons projecting to the enteric nervous system are unknown. The dorsal motor nucleus of the vagus signals to the gastrointestinal system. Ghrelin is elevated in patients with inflammatory bowel disease and has been implicated as an inflammatory mediator. The purpose of this study was to investigate the effects of gastrointestinal inflammation on the dorsal motor nucleus of the vagus in rats, as well as the effects of proinflammatory cytokines and ghrelin on neurons from the dorsal motor nucleus of the vagus in vitro.

Methods: DiI was injected into the stomach wall of rats to retrogradely label neurons of the dorsal motor nucleus of the vagus. Intestinal inflammation was induced with indomethacin injection. Serial serum ghrelin measurements were performed. Tissue was examined under fluorescent microscopy. In vitro studies using primary culture of neurons from the dorsal motor nucleus of the vagus were performed. Reverse transcriptase-polymerase chain reaction for cytokine transcripts and immunohistochemistry for cytokine receptors were performed. Cell proliferation and apoptosis were measured by enzyme-linked immunosorbent assay.

Results: A significant decrease of DiI labeling was demonstrated in the dorsal motor nucleus of the vagus of animals injected with indomethacin. Serum levels of ghrelin were significantly elevated 2 days after induction of inflammation. In vitro, apoptosis and cell proliferation were measured after 24-hour exposure to experimental conditions. Ghrelin alone had no effect on apoptosis. Exposure to interleukin (IL)-1 beta or tumor necrosis factor (TNF)-alpha increased apoptosis. The addition of ghrelin to cytokine resulted in significant decreases in apoptosis compared to cytokine alone. Ghrelin significantly increased neuronal proliferation. Exposure to IL-1 beta, IL-6, or TNF-alpha significantly decreased proliferation. The addition of ghrelin to TNF-alpha or IL-6 significantly increased cellular proliferation compared to cytokine alone.

Conclusions: Neurons from the dorsal motor nucleus of the vagus that project to the stomach are reduced in number after induction of colitis in rats. In vitro, proinflammatory cytokines increase apoptosis and decrease cell proliferation of neurons from the dorsal motor nucleus of the vagus. These effects are attenuated by ghrelin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547415PMC
http://dx.doi.org/10.1016/j.surg.2008.03.008DOI Listing

Publication Analysis

Top Keywords

dorsal motor
36
motor nucleus
36
nucleus vagus
36
neurons dorsal
20
cell proliferation
12
dorsal
9
motor
9
nucleus
9
vagus
9
ghrelin
9

Similar Publications

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.

View Article and Find Full Text PDF

Plasmalogens Activate AKT/mTOR Signaling to Attenuate Reactive Oxygen Species Production in Spinal Cord Injury.

Curr Gene Ther

January 2025

Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.

Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Pediatric spinal tumors include a variety of developmental lesions and uncommon neoplasms that differ significantly from those seen in adults. These conditions are underreported in the sub-Saharan medical literature. We present the case of a 10-year-old girl brought by her family to the University Teaching Hospital of Kinshasa in the Democratic Republic of Congo with progressive lower limb functional impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!