In this study, different concentrations of two antiepileptic drugs, carbamazepine (CBZ) and oxcarbazepine (OXC), have been evaluated for genotoxicity in the wing spot test of Drosophila melanogaster. The wing spot test detects different kinds of somatic mutations and allows detection of mitotic recombinations. Third-instar larvae trans-heterozygous for two genetic markers mwh and flr, were treated at different concentrations of the drugs. Oxcarbazepine exposure concentrations were 1.88, 3.75, 7.50 and 15microg/ml. Carbamazepine exposure concentrations were 5, 10, 20 and 40microg/ml. In addition, the observed mutations were classified according to size and type of mutation per wing. CBZ was genotoxic in terms of total mutations per wing in the highest two doses; the same was true for OXC in the highest three doses. Survival rates of flies used in the experiments were significantly lower than that of the control group showing both drugs to have toxic effects to Drosophila melanogaster larvae. Clone formation frequency for 10(5) cells was lower in OXC than CBZ. However this was lower than the critical genotoxicity frequency of 2.0.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2008.06.089 | DOI Listing |
BMC Ecol Evol
January 2025
Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India.
Wings are primarily used in flight but also play a role in mating behaviour in many insects. Drosophila species exhibit a variety of pigmentation patterns on their wings. In some sexually dimorphic Drosophilids, a pigmented spot pattern is found at the top-right edge of the male wings.
View Article and Find Full Text PDFCells Dev
January 2025
Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.
Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.
View Article and Find Full Text PDFMicroPubl Biol
October 2024
Biozentrum, University of Basel, Basel, Basel-City, Switzerland.
Dominant gain-of-function alleles for the homeotic gene ( ) have been known for a long time. They are summarized under the name ( ). Such alleles are rather easy to spot because the morphology of the conspicuous dorsal wing appendage is often dramatically changed.
View Article and Find Full Text PDFFoods
August 2024
Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2024
Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
Chrysin is hypothesized to possess the ability to prevent different illnesses, such as diabetes, cancer, and neurodegenerative disorders. Nonetheless, chrysin has a low solubility under physiological conditions, resulting in limited bioavailability. In a previous study, we utilized an oil-in-water emulsion system (chrysin-ES or chrysin-NE) to encapsulate chrysin, thereby increasing its bioaccessibility and preserving its antioxidant and anti-Alzheimer's properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!