Reaumuria soongorica is a dominant species in the desert shrubbery vegetation in arid regions of northwestern China, playing an important role in the maintenance of the stability and continuity of desert ecosystem. In this paper, a total of 407 individuals in 21 natural populations of R. soongorica were selected from its main distribution areas to measure the leaf stable carbon isotope composition (delta13C) and nitrogen, phosphorus, potassium, water, proline and chlorophyll contents, with the correlations between the delta13C value and the test physiological parameters analyzed. The results showed that leaf delta13C value was significantly correlated with the contents of leaf potassium, water, and proline (P <0.001), and the correlation with leaf potassium content was most profound (r = 0.793), followed by that with leaf water content (r = -0.786), indicating that the variation of leaf delta13C value could reflect the nutritional status of the plants, and also, their water-deficient degree. The different distribution trends in leaf delta13C value of R. soongorica were likely caused by stomatal conductance, rather than by nutrient-related changes in photosynthetic efficiency under extremely low available water conditions.
Download full-text PDF |
Source |
---|
Plant Biol (Stuttg)
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δC, δO, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THg), which were 85.
View Article and Find Full Text PDFOecologia
January 2025
Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA.
Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:
Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (g) and photosynthesis (A), with its slope parameter (g) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g, the potential role of evolutionary history in shaping g remains incompletely understood.
View Article and Find Full Text PDFThe conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!