A field experiment was conducted to study the effects of maize-peanut intercropping on the economic yield of the two crops and the light response of their functional leaves' photosynthesis. The results showed that maize-peanut intercropping had an obvious yield advantage, with the total economic yield being 2,896 kg hm(-2) in 2004 and 2,894 kg hm(-2) in 2005, and enhanced the land utilization rate by 14%-17%. For maize's functional leaves, the intercropping enhanced their light saturation point, compensation point, and photosynthetic rate under strong light; while for peanut's functional leaves, it reduced their light saturation point and compensation point but enhanced the apparent quantum yield of photosynthesis and photosynthetic rate under weak light, indicating that maize-peanut intercropping enhanced the utilization efficiency of strong light by maize and that of weak light by peanut, making this intercropping system present an obvious yield advantage.
Download full-text PDF |
Source |
---|
Plant Physiol Biochem
December 2024
College of Resources and Environmental Sciences, State Key Laboratory of Nutrient Use and Management (SKL-NUM), National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, China. Electronic address:
As an oilseed crop, the yield and quality of peanuts are severely constrained by nutrient deficiencies, particularly in calcareous soils in northern China. Maize-peanut intercropping is an effective strategy to enhance mineral nutrient efficiency in peanuts via plant-microbe interaction, but the underlying mechanisms remain elusive. Here, we conducted experiments using a Pseudomonas strain (Pse.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China.
Under the one-season-a-year cropping pattern in Northeast China, continuous cropping is one of the main factors contributing to the degradation of black soil. Previous studies (on maize-soybean, maize-peanut, and maize-wheat intercropping) have shown that intercropping can alleviate this problem. However, it is not known whether intercropping is feasible for maize and rice under dry cultivation, and its effects on yield and soil fertility are unknown.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China.
The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing.
View Article and Find Full Text PDFFront Plant Sci
June 2024
College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China.
Background: Border row effects impact the ecosystem functions of intercropping systems, with high direct interactions between neighboring row crops in light, water, and nutrients. However, previous studies have mostly focused on aboveground, whereas the effects of intercropping on the spatial distribution of the root system are poorly understood. Field experiments and planting box experiments were combined to explore the yield, dry matter accumulation, and spatial distribution of root morphological indexes, such as root length density (RLD), root surface area density (RSAD), specific root length (SRL), and root diameter (RD), of maize and peanut and interspecific interactions at different soil depths in an intercropping system.
View Article and Find Full Text PDFJ Environ Manage
February 2024
College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Lab of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!