Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Tumor-associated cells and vasculature express attractive molecular markers for site-specific vector targeting. To attain tumor-selective tropism, we recently developed a baculovirus vector displaying the lymphatic homing peptide LyP-1, originally identified by ex vivo/in vivo screening of phage display libraries, on the viral envelope by fusion to the transmembrane anchor of vesicular stomatitis virus G-protein.
Methods: In the present study, we explored the specificity and kinetics of viral binding and internalization as well as in vivo tumor homing of the LyP-1 displaying virus to elucidate the applicability of baculovirus for targeted therapies.
Results: We demonstrated that the LyP-1 peptide contributes to saturable binding of baculovirus in human MDA-MB-435 and HepG2 carcinoma cells and escalates the kinetics of viral internalization leading to earlier nuclear accumulation and enhanced transgene expression. The LyP-1 displaying virus also showed stronger competitiveness against transduction with wild-type baculovirus, suggesting involvement of a specific receptor in cellular attachment and entry. Following intravenous injections, the modified virus accumulated within the human MDA-MB-435 and MDA-MB-231 carcinoma xenografts in mice with higher specificity and efficiency than the control virus. Targeting of the modified virus was more specific in the MDA-MB-435 than in the MDA-MB-231 xenografts as demonstrated by higher tumor accumulation and lower distribution in nontarget organs. No apparent cytotoxicity was associated with the surface modification.
Conclusions: This first demonstration of in vivo tumor targeting of a systemically administered, tropism-modified baculoviral vector highlights the potential of baculovirus-mediated targeted therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.1222 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!