Objective: To assess the importance of B-cell control during parasite infections in multiple sclerosis (MS) patients.
Methods: Peripheral blood CD19+ B cells from 12 helminth-infected MS patients, 12 MS patients without infection, 10 patients infected with Trypanosoma cruzi, 8 subjects infected with Paracoccidioides brasiliensis, and 12 healthy control subjects were purified using magnetic cell sorting. Interleukin (IL)-4, IL-6, IL-10, tumor necrosis factor-alpha, lymphotoxin, transforming growth factor-beta, brain-derived neurotrophic factor, and nerve growth factor secretion were evaluated after stimulation with CDw32 L cells and CD40 antibody using enzyme-linked immunosorbent assays. The production of anti-myelin oligodendrocyte glycoprotein IgG and IgM antibodies was evaluated by enzyme-linked immunosorbent spot assays. Cell phenotype was assessed by flow cytometry.
Results: Helminth infections in MS patients created a B-cell population producing high levels of IL-10, dampening harmful immune responses through a mechanism mediated, at least in part, by the ICOS-B7RP-1 pathway. The IL-10-producing B-cell phenotype detected expressed high levels of CD1d and was similar to the one observed in mature naive B2 cells (namely, CD11b(-), CD5(-), CD27(-), and IgD+). Moreover, B cells isolated from helminth-infected MS patients also produced greater amounts of brain-derived neurotrophic factor and nerve growth factor compared with those of normal subjects, T. cruzi-infected subjects, P. brasiliensis-infected subjects, or uninfected MS patients, raising the possibility that these cells may exert a neuroprotective effect on the central nervous system.
Interpretation: Increased production of B-cell-derived IL-10 and of neurotrophic factors are part of the parasite's regulation of host immunity and can alter the course of MS, potentially explaining environmental-related MS suppression observed in areas with low disease prevalence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.21438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!