To help identify the etiological agents for amyloid-related diseases, attention is focused here on the fibrillar precursors, also called oligomers and protofibrils, and on modeling the reaction kinetics of the formation of the amyloid nucleus. Insulin is a favored model for amyloid formation, not only because amyloidosis can be a problem in diabetes, but also because aggregation and fibrillation causes problems during production, storage, and delivery. Small angle neutron scattering (SANS) is used to measure the temporal formation of insulin oligomers in H(2)O- and D(2)O-based solvents and obtain consistent evidence of the composition of the insulin nucleus that comprised three dimers or six monomers similar to that recently proposed in the literature. A simple molecular structural model that describes the growth of oligomers under a wide range of environmental conditions is proposed. The model first involves lengthening or end-on-end association of dimers to form three-dimer nuclei, and then exhibits broadening or side-on-side association of nuclei. Using different additives to demonstrate their influence on the kinetics of oligomer formation, we showed that, although the time required to form the nucleus was dependent on a specific system, they all followed a universal pathway for nucleus and precursor formation. The methods and analyses presented here provide the first experimental molecular size description of the details of amyloid nucleus formation and subsequent propagation to fibril precursors independent of kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.22169 | DOI Listing |
Parkinsonism Relat Disord
January 2025
Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:
Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.
Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.
Adv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.
View Article and Find Full Text PDFAlzheimer's disease (AD), a leading cause of dementia, is associated with significant respiratory dysfunctions. Our study explores the role of astrogliosis in the brainstem retrotrapezoid nucleus (RTN), a key breathing regulatory center, and its impact on breathing control and AD pathology in mice. Using Tg-2576 AD and wild-type mice, we investigated the effect of silencing the transforming growth factor-beta receptor II (TGFβR II) in the RTN.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.
Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.
Alzheimers Dement
January 2025
Computational Brain Research and Intervention (C-Brain) Lab, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA.
Introduction: Amyloid beta (Aβ) plaques and hyperphosphorylated tau in the entorhinal regions are key Alzheimer's disease (AD) markers, but the spatial Aβ pathways influencing tau pathology remain unclear.
Methods: We applied predictive modeling to identify Aβ standardized uptake value ratio (SUVR) spatial patterns that predict entorhinal tau levels, future hippocampal volume, and Preclinical Alzheimer's Cognitive Composite (PACC) scores at 5-year follow-up. The model was trained on Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 237), incorporating amyloid-PET (positron emission tomography), tau-PET, magnetic resonance imaging (MRI), and cognitive data, and validated on Harvard Aging Brain Study (HABS) (N = 276).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!