Biochemistry of PUFA double bond isomerases producing conjugated linoleic acid.

Chembiochem

Georg August University, Albrecht von Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany.

Published: August 2008

The biotransformation of linoleic acid (LA) into conjugated linoleic acid (CLA) by microorganisms is a potentially useful industrial process. In most cases, however, the identities of proteins involved and the details of enzymatic activity regulation are far from clear. Here we summarize available data on the reaction mechanisms of CLA-producing enzymes characterized until now, from Butyrivibrio fibrisolvens, Lactobacillus acidophilus, Ptilota filicina, and Propionibacterium acnes. A general feature of enzymatic LA isomerization is the protein-assisted abstraction of an aliphatic hydrogen atom from position C-11, while the role of flavin as cofactor for the double bond activation in CLA-producing enzymes is also discussed with regard to the recently published three-dimensional structure of an isomerase from P. acnes. Combined data from structural studies, isotopic labeling experiments, and sequence comparison suggest that at least two different prototypical active site geometries occur among polyunsaturated fatty acid (PUFA) double bond isomerases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200800141DOI Listing

Publication Analysis

Top Keywords

double bond
12
linoleic acid
12
pufa double
8
bond isomerases
8
conjugated linoleic
8
cla-producing enzymes
8
biochemistry pufa
4
isomerases producing
4
producing conjugated
4
acid
4

Similar Publications

Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.

Carbohydr Res

January 2025

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:

Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.

View Article and Find Full Text PDF

Globin X is a newly discovered member of the globin family, while its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine.

View Article and Find Full Text PDF

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

ThCTi@(6)-C: Th═C Double Bond in a Mixed Actinide-Transition Metal Cluster.

J Am Chem Soc

January 2025

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.

View Article and Find Full Text PDF

The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!