Understanding the physics of low-dimensional systems and the operation of next-generation electronics will depend on our ability to measure the electrical properties of nanomaterials at terahertz frequencies ( approximately 100 GHz to 10 THz). Single-walled carbon nanotubes are prototypical one-dimensional nanomaterials because of their unique band structure and long carrier mean free path. Although nanotube transistors have been studied at microwave frequencies (100 MHz to 50 GHz), no techniques currently exist to probe their terahertz response. Here, we describe the first terahertz electrical measurements of single-walled carbon nanotube transistors performed in the time domain. We observe a ballistic electron resonance that corresponds to the round-trip transit of an electron along the nanotube with a picosecond-scale period. The electron velocity is found to be constant and equal to the Fermi velocity, showing that the high-frequency electron response is dominated by single-particle excitations rather than collective plasmon modes. These results demonstrate a powerful new tool for directly probing picosecond electron motion in nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2008.60DOI Listing

Publication Analysis

Top Keywords

single-walled carbon
12
ballistic electron
8
electron resonance
8
carbon nanotube
8
frequencies 100
8
nanotube transistors
8
electron
6
terahertz
4
terahertz time-domain
4
time-domain measurement
4

Similar Publications

Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.

View Article and Find Full Text PDF

Background: Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.

Objective: The main objective of this present work is to fabrícate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.

View Article and Find Full Text PDF

Scalable one-step fabrication of integrated electrode arrays for highly sensitive and portable carbendazim detection.

Food Chem

January 2025

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:

Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Controlled Introduction of sp3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry.

Angew Chem Int Ed Engl

January 2025

Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!