Marine primary productivity is iron (Fe)-limited in vast regions of the contemporary oceans, most notably the high nutrient low chlorophyll (HNLC) regions. Diatoms often form large blooms upon the relief of Fe limitation in HNLC regions despite their prebloom low cell density. Although Fe plays an important role in controlling diatom distribution, the mechanisms of Fe uptake and adaptation to low iron availability are largely unknown. Through a combination of nontargeted transcriptomic and metabolomic approaches, we have explored the biochemical strategies preferred by Phaeo dactylum tricornutum at growth-limiting levels of dissolved Fe. Processes carried out by components rich in Fe, such as photosynthesis, mitochondrial electron transport, and nitrate assimilation, were down-regulated. Our results show that this retrenchment is compensated by nitrogen (N) and carbon (C) reallocation from protein and carbohydrate degradation, adaptations to chlorophyll biosynthesis and pigment metabolism, removal of excess electrons by mitochondrial alternative oxidase (AOX) and non-photochemical quenching (NPQ), and augmented Fe-independent oxidative stress responses. Iron limitation leads to the elevated expression of at least three gene clusters absent from the Thalassiosira pseudonana genome that encode for components of iron capture and uptake mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492447PMC
http://dx.doi.org/10.1073/pnas.0711370105DOI Listing

Publication Analysis

Top Keywords

hnlc regions
8
iron
5
whole-cell response
4
response pennate
4
pennate diatom
4
diatom phaeodactylum
4
phaeodactylum tricornutum
4
tricornutum iron
4
iron starvation
4
starvation marine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!