Automatic generation of fuzzy inference systems via unsupervised learning.

Neural Netw

School of Electrical and Electronic Engineering, Nanyang Technological University, S1, 50 Nanyang Ave, Singapore 639798, Singapore.

Published: December 2008

In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach, structure identification and parameter estimations of FISs are achieved via Unsupervised Learning (UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering methods are adopted for input space clustering when generating FISs. At the same time, structure and preconditioning parts of a FIS are generated in a RL manner in that fuzzy rules are adjusted and deleted according to reinforcement signals. The proposed EDSGFQL methodologies can automatically create, delete and adjust fuzzy rules dynamically. Simulation studies on wall-following and obstacle avoidance tasks by a mobile robot show that the proposed approach is superior in generating efficient FISs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2008.06.007DOI Listing

Publication Analysis

Top Keywords

fuzzy inference
8
inference systems
8
unsupervised learning
8
fuzzy rules
8
fuzzy
5
automatic generation
4
generation fuzzy
4
systems unsupervised
4
learning
4
learning paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!