Nitrate (NO3-) is often observed in surface waters draining terrestrial ecosystems that remain strongly nitrogen (N) limited. It has been suggested that this occurs due to hydrological bypassing of soil or vegetation N retention, particularly during high flows. To test this hypothesis, artificial rain events were applied to 12 replicate soil blocks on a Welsh podzolic acid grassland hillslope, labelled with 15N-enriched NO3- and a conservative bromide (Br-) tracer. On average, 31% of tracer-labelled water was recovered within 4 h, mostly as mineral horizon lateral flow, indicating rapid vertical water transfer through the organic horizon via preferential flowpaths. However, on average only 6% of 15N-labelled NO3- was recovered. Around 80% of added NO3- was thus rapidly immobilised, probably by microbial communities present on the surfaces of preferential flowpaths. Transitory exceedance of microbial N-uptake capacity during periods of high water and N flux may therefore provide a mechanism for NO3- leaching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2008.06.019DOI Listing

Publication Analysis

Top Keywords

preferential flowpaths
8
no3-
5
rapid immobilisation
4
immobilisation leaching
4
leaching wet-deposited
4
wet-deposited nitrate
4
nitrate upland
4
upland organic
4
organic soils
4
soils nitrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!