A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons. | LitMetric

Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3K/Akt-dependent pathway in hypothalamic neurons.

Neuropharmacology

Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.

Published: October 2008

Estrogen plays a role in restoring homeostatic balance during the stress response by altering hypothalamic function and NO production in the brain. While we know that estrogen acts on the hypothalamus to stimulate the NO system through an ERbeta-dependent mechanism in neurons, the molecular mechanisms responsible for these effects are unknown. Because phosphorylation of nNOS at Ser(1412) increases nNOS activity which leads to increased NO production, we investigated the effects of ERbeta activation on nNOS phosphorylation at Ser(1412) and NO production in primary hypothalamic neurons. Using the selective ERbeta agonist, DPN (10nM), we show that activation of ERbeta rapidly increases phosphorylation levels of nNOS at Ser(1412) and NO production. We also show that the PI3K pathway, but not the MAPK pathway, mediates the increases in levels of Ser(1412) phosphorylation and NO production induced by ERbeta activation, as the selective PI3K inhibitor, LY294002 (10microM), blocked the effects of ERbeta activation. Finally, we demonstrate that Src kinase acts upstream of the PI3K/Akt pathway based on our finding that the selective Src inhibitor, PP2 (10microM), blocked the increases in nNOS phosphorylation levels, NO production, and PI3K/Akt activity induced by ERbeta activation. Together, our results show that Src kinase mediates ERbeta-induced increases in phosphorylation levels of nNOS at Ser(1412) and NO production by activating the PI3K/Akt pathway. These findings provide novel insight into the signaling mechanisms through which E2 stimulates the NO system in hypothalamic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2008.06.058DOI Listing

Publication Analysis

Top Keywords

erbeta activation
16
hypothalamic neurons
12
nnos ser1412
12
ser1412 production
12
phosphorylation levels
12
activation erbeta
8
increases levels
8
production
8
increases nnos
8
effects erbeta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!