Structure, energetics, and reactivity of boric acid nanotubes: a molecular tailoring approach.

J Phys Chem A

Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai, India 600 020.

Published: August 2008

Cardinality guided molecular tailoring approach (CG-MTA) [Ganesh et al. J. Chem. Phys. 2006, 125, 104019] has been effectively employed to perform ab initio calculations for large molecular clusters of boric acid. It is evident from the results that boric acid forms nanotubes, structurally similar to carbon nanotubes, with the help of an extensive hydrogen-bonding (H-bonding) network. Planar rosette-shaped hexamer of boric acid is the smallest repeating unit in such nanotubes. The stability of these tubes increases due to enhancement in the number of H-bonding interactions as the diameter increases. An analysis of molecular electrostatic potential (MESP) of these systems provides interesting features regarding the reactivity of these tubes. It is predicted that due to alternate negative and positive potentials on O and B atoms, respectively, boric acid nanotubes will interact favorably with polar systems such as water and can also form multiwalled tubes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp802723eDOI Listing

Publication Analysis

Top Keywords

boric acid
20
acid nanotubes
8
molecular tailoring
8
tailoring approach
8
boric
5
acid
5
nanotubes
5
structure energetics
4
energetics reactivity
4
reactivity boric
4

Similar Publications

Background/objectives: rapidly acquires antibiotic resistance and demonstrates increasing tolerance to antiseptics. This study evaluated the activity of eight antiseptics against , assessed its ability to develop adaptation to these antiseptics, and, for the first time, determined the Karpinski Adaptation Index (KAI) for this bacterium.

Methods: The minimal inhibitory concentration (MIC), susceptibility to antibiotics, bactericidal time according to EN 1040:2005, adaptation potential, and KAI of strains were evaluated.

View Article and Find Full Text PDF

The aim of this project is to fabricate fiber mats and hydrogel materials that constitute the two main components of a wound dressing material. The contributions of boric acid (BA) and zinc oxide (ZnO) to the physical and mechanical properties of polycaprolactone (PCL) is investigated. These materials are chosen for their antimicrobial and antifungal effects.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

The lack of clinical breakpoints and epidemiological cut-off values (ECOFFs) for antifungals prescribed for vulvovaginal candidiasis (VVC) make interpretation of antifungal susceptibility data difficult. This leads to empirical prescribing, poor clinical management and emergence of resistance. The susceptibilities of 152 , 105 , 31 and 8 VVC isolates against eight antifungals, were determined according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) E.

View Article and Find Full Text PDF

Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!