Selected deprotonated oligodeoxynucleotides generated by electrospray ionization were exposed to a variety of neutral molecules in the gas phase at room temperature in flowing helium gas at 0.35 Torr. Single-stranded [AGTCTG-nH]n- and single- and double-stranded [GCATGC-nH]n- anions were found to be remarkably unreactive with strong oxidants (O3, O2, N2O) and potential intercalators (benzene, pyridine, toluene, and quinoxaline). Hydration also was observed to be inefficient. However, [AGTCTG-nH]n- anions with n=2, 3, 4, and 5 were seen to be sequentially protonated and/or hydrobrominated with HBr (but not damaged) and displayed an interesting "end effect" against protonation. Measurements are provided for the rate coefficients of reaction and the efficiencies of protonation. These experimental results point toward the exciting prospect of measuring the intrinsic chemistry of other bare DNA-like anions, including double-stranded oligonucleotide anions in the gas phase at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp804193uDOI Listing

Publication Analysis

Top Keywords

gas phase
12
phase room
8
room temperature
8
chemical stability
4
stability reactivity
4
reactivity deprotonated
4
deprotonated oligonucleotides
4
oligonucleotides dna
4
gas
4
dna gas
4

Similar Publications

Transient methods for understanding the properties of strongly oxidizing radicals.

Chem Commun (Camb)

January 2025

Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.

View Article and Find Full Text PDF

Bismuth oxyselenide (BiOSe) stands as a highly promising layered semiconductor with outstanding optical, electrical, and thermal properties. For the practical application of the material toward the devices, growing BiOSe directly on the amorphous substrate at low temperatures (<400 °C) is essential; however, the negatively charged bottom Se layer originating from alternating stacks of Se and [BiO] has hindered this process. In this work, we report the method for synthesizing a BiOSe film on amorphous alumina (AlO) directly at 350 °C by using chemical solution deposition.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.

View Article and Find Full Text PDF

Gas-phase and water-mediated mechanisms for the OCS + OH reaction.

Phys Chem Chem Phys

January 2025

Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.

We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!