Sleep-disordered breathing with recurrent apnea (periodic cessation of breathing) results in chronic intermittent hypoxia (IH), which leads to cardiovascular and respiratory pathology. Molecular mechanisms underlying IH-evoked cardio-respiratory co-morbidities have not been delineated. Mice with heterozygous deficiency of hypoxia-inducible factor 1alpha (HIF-1alpha) do not develop cardio-respiratory responses to chronic IH. HIF-1alpha protein expression and HIF-1 transcriptional activity are induced by IH in PC12 cells. In the present study, we investigated the signaling pathways associated with IH-evoked HIF-1alpha accumulation. PC12 cells were exposed to aerobic conditions (20% O(2)) or 60 cycles of IH (30 sec at 1.5% O(2) followed by 5 min at 20% O(2)). Our results show that IH-induced HIF-1alpha accumulation is due to increased generation of ROS by NADPH oxidase. We further demonstrate that ROS-dependent Ca(2+) signaling pathways involving phospholipase Cgamma (PLCgamma) and protein kinase C activation are required for IH-evoked HIF-1alpha accumulation. IH leads to activation of mTOR and S6 kinase (S6K) and rapamycin partially inhibited IH-induced HIF-1alpha accumulation. IH also decreased hydroxylation of HIF-1alpha protein and anti-oxidants as well as inhibitors of Ca(+2) signaling prevented this response. Thus, both increased mTOR-dependent HIF-1alpha synthesis and decreased hydroxylase-dependent HIF-1alpha degradation contribute to IH-evoked HIF-1alpha accumulation. Following IH, HIF-1alpha, and phosphorylated mTOR levels remained elevated during 90 min of re-oxygenation despite re-activation of prolyl hydroxylase. Rapamycin or cycloheximide, blocked increased HIF-1alpha levels during re-oxygenation indicating that mTOR-dependent protein synthesis is required for the persistent elevation of HIF-1alpha levels during re-oxygenation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696817 | PMC |
http://dx.doi.org/10.1002/jcp.21537 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!