The role of P-glycoprotein (P-gp, ABCB1) on the absorption process was investigated by drug-drug interaction studies of TAK-427 with P-gp inhibitors (erythromycin, ketoconazole or quinidine) in rats and by transport studies using rat multidrug resistance (MDR1) stably expressing cells and rat small intestine mounted in a Ussing-type chamber. TAK-427 showed high efflux activity with low permeability in rat MDR1a and MDR1b stably expressing cells and was revealed to be a typical substrate for P-gps. Although TAK-427 was mainly absorbed from the small intestine in rats, a large part of the dosed compound remained in the gastrointestinal tract. Orally co-administered P-gp inhibitors (50 mg/kg) increased the AUC of TAK-427 after a 5 mg/kg oral dose 5.4- to 18.3-fold, whereas orally administered P-gp inhibitors had a minor effect on the increase in the AUC of TAK-427 (1.3- to 2.2-fold) after a 0.5 mg/kg intravenous dose. Thus, the bioavailability of TAK-427 after oral administration in rats (7.3%) markedly increased when co-administered with P-gp inhibitors (28.6-57.6%). Moreover, the transport of TAK-427 was predominantly secretory throughout the rat small intestine and was inhibited by P-gp inhibitors. In conclusion, P-gp can markedly reduce the absorption of a typical P-gp substrate by its efflux activity throughout the absorption site.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.609DOI Listing

Publication Analysis

Top Keywords

p-gp inhibitors
20
small intestine
12
tak-427
8
p-gp
8
stably expressing
8
expressing cells
8
rat small
8
efflux activity
8
co-administered p-gp
8
auc tak-427
8

Similar Publications

Oral Administration of [F]MC225 for Quantification of P-glycoprotein Function: A Feasibility Study.

Mol Imaging Biol

January 2025

Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Purpose: This preclinical study explored the feasibility of assessing P-glycoprotein (P-gp) function in both brain and gastrointestinal (GI) tract of rats using positron emission tomography (PET) following oral administration of [F]MC225. Different oral administration protocols were evaluated, and radioactivity uptake was compared with uptake following intravenous administration.

Procedures: Twelve male Wistar rats were divided into four groups and subjected to intravenous or oral [F]MC225 administration protocols: G (intravenous route), G (oral administration without fasting), G (oral administration with fasting), and G (oral administration with fasting following administration of the P-gp inhibitor tariquidar).

View Article and Find Full Text PDF

Radiosynthesis and evaluation of novel F labeled PET ligands for imaging monoacylglycerol lipase.

Eur J Med Chem

January 2025

Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:

Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.

View Article and Find Full Text PDF

Venous thromboembolism (VTE) treatment with apixaban uses a higher 10 mg twice daily regimen for 7 days (lead-in therapy). But, in patients with initial parenteral anticoagulation treatment or those with higher bleeding risk, clinicians may not always adhere to the full 7-day lead-in duration. This retrospective cohort study included adult patients admitted to the Veterans Affairs Health care System from January 2011 to April 2022, who received at least 24 hours of parenteral anticoagulation followed by lead-in apixaban therapy for VTE.

View Article and Find Full Text PDF

Trophoblast cell surface antigen 2 (TROP2) is highly expressed in multiple cancers relative to normal tissues, supporting its role as a target for cancer therapy. OBI-992 is an antibody-drug conjugate (ADC) derived from a novel TROP2-targeted antibody linked to the topoisomerase 1 (TOP1) inhibitor exatecan via an enzyme-cleavable hydrophilic linker, with a drug-antibody ratio of 4. This study evaluated and compared the antitumor activity of OBI-992 with that of benchmark TROP2-targeted ADCs datopotamab deruxtecan (Dato-DXd) and sacituzumab govitecan (SG) in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models.

View Article and Find Full Text PDF

Impact of Sotorasib, a KRAS G12C Inhibitor, on the Pharmacokinetics and Therapeutic Window of Digoxin, a P-Glycoprotein Substrate.

Clin Pharmacol Drug Dev

January 2025

Clinical Pharmacology Modeling and Simulation, Amgen Inc., Thousand Oaks, CA, USA.

Sotorasib is a small-molecule Kirsten rat sarcoma viral oncogene homolog (KRAS) G12C inhibitor indicated for the treatment of KRAS G12C-driven cancers. KRAS G12C is a common mutation in solid tumors, including non-small cell lung cancer. In vitro studies suggested that sotorasib is a weak inhibitor of P-glycoprotein transporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!