Erythroblastic islands: niches for erythropoiesis.

Blood

Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Published: August 2008

Erythroblastic islands, the specialized niches in which erythroid precursors proliferate, differentiate, and enucleate, were first described 50 years ago by analysis of transmission electron micrographs of bone marrow. These hematopoietic subcompartments are composed of erythroblasts surrounding a central macrophage. A hiatus of several decades followed, during which the importance of erythroblastic islands remained unrecognized as erythroid progenitors were shown to possess an autonomous differentiation program with a capacity to complete terminal differentiation in vitro in the presence of erythropoietin but without macrophages. However, as the extent of proliferation, differentiation, and enucleation efficiency documented in vivo could not be recapitulated in vitro, a resurgence of interest in erythroid niches has emerged. We now have an increased molecular understanding of processes operating within erythroid niches, including cell-cell and cell-extracellular matrix adhesion, positive and negative regulatory feedback, and central macrophage function. These features of erythroblast islands represent important contributors to normal erythroid development, as well as altered erythropoiesis found in such diverse diseases as anemia of inflammation and chronic disease, myelodysplasia, thalassemia, and malarial anemia. Coupling of historical, current, and future insights will be essential to understand the tightly regulated production of red cells both in steady state and stress erythropoiesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2481536PMC
http://dx.doi.org/10.1182/blood-2008-03-077883DOI Listing

Publication Analysis

Top Keywords

erythroblastic islands
12
central macrophage
8
erythroid niches
8
erythroid
5
niches
4
islands niches
4
niches erythropoiesis
4
erythropoiesis erythroblastic
4
islands specialized
4
specialized niches
4

Similar Publications

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.

View Article and Find Full Text PDF

The Impact of Sodium Selenite and Seleno-L-Methionine on Stress Erythropoiesis in a Murine Model of Hemolytic Anemia.

J Nutr

December 2024

Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States. Electronic address:

Background: Selenium (Se) is an essential trace element that exerts most biological activities through selenoproteins. Dietary selenium is a key regulator of red cell homeostasis and stress erythropoiesis. However, it is unknown whether the form and increasing doses of Se supplementation in the diet impact stress erythropoiesis under anemic conditions.

View Article and Find Full Text PDF

GLTSCR1, a protein encoded by the Bicra gene, is a defining subunit of the SWI/SNF (also called mammalian BAF) chromatin remodeling subcomplex called GBAF/ncBAF. To determine the role of GLTSCR1 during mouse development, we generated a Bicra germline knockout mouse using CRISPR/Cas9. Mice with homozygous loss of Bicra were born at Mendelian ratios but were small, pale and died within 24 hours after birth.

View Article and Find Full Text PDF

[Research progress on erythroblastic islands in erythroid development and related diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

October 2024

Department of Medical Genetics and Developmental Biology, Basic Medical Science Academy, Air Force Medical University, Xi'an 710032, China. *Corresponding author, E-mail:

Erythroblastic islands (EBIs) are specialized structures that are formed by a central macrophage surrounded by maturating erythroblasts. The central macrophage mediates EBI formation and plays a crucial role in the proliferation, differentiation, enucleation, and maturation of erythroblasts. In stress erythropoiesis, the expression levels of several adhesion molecules mediating EBI formation become abnormal, leading to various erythroid diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!