Pak1 (p21-activated kinase-1) and the dynein light chain, LC8, are overexpressed in breast cancer, and their direct interaction has been proposed to regulate tumor cell survival. These effects have been attributed in part to Pak1-mediated phosphorylation of LC8 at serine 88. However, LC8 is homodimeric, which renders Ser(88) inaccessible. Moreover, Pak1 does not contain a canonical LC8 binding sequence compared with other characterized LC8 binding sequences. Together, these observations raise the question whether the Pak1/LC8 interaction is distinct (i.e. enabled by a unique interface independent of LC8 dimerization). Herein, we present results from biochemical, NMR, and crystallographic studies that show that Pak1 (residues 212-222) binds to LC8 along the same groove as canonical LC8 interaction partners (e.g. nNOS and BimL). Using LC8 point mutants K36P and T67A, we were able to differentiate Pak1 from canonical LC8 binding sequences and identify a key hydrogen bond network that compensates for the loss of the conserved glutamine in the consensus sequence. We also show that the target binding interface formed through LC8 dimerization is required to bind to Pak1 and precludes phosphorylation of LC8 at Ser(88). Consistent with this observation, in vitro phosphorylation assays using activated Pak1 fail to phosphorylate LC8. Although these results define structural details of the Pak1/LC8 interaction and suggest a hierarchy of target binding affinities, they do not support the current model whereby Pak1 binds to and subsequently phosphorylates LC8 to promote anchorage-independent growth. Rather, they suggest that LC8 binding modulates Pak1 activity and/or nuclear localization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556000 | PMC |
http://dx.doi.org/10.1074/jbc.M800758200 | DOI Listing |
Peptides
September 2024
Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom. Electronic address:
bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2023
Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes.
View Article and Find Full Text PDFLangmuir
September 2023
Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition.
View Article and Find Full Text PDFPLoS Comput Biol
April 2023
Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America.
Multistep protein-protein interactions underlie most biological processes, but their characterization through methods such as isothermal titration calorimetry (ITC) is largely confined to simple models that provide little information on the intermediate, individual steps. In this study, we primarily examine the essential hub protein LC8, a small dimer that binds disordered regions of 100+ client proteins in two symmetrical grooves at the dimer interface. Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data analyses employing simple models that treat bivalent binding as a single event with a single binding affinity.
View Article and Find Full Text PDFBiomolecules
February 2023
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
LC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!