Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546554PMC
http://dx.doi.org/10.1074/jbc.M802800200DOI Listing

Publication Analysis

Top Keywords

inflammatory genes
12
histone h3-lysine
12
inflammatory gene
12
set7/9
8
methyltransferase set7/9
8
set7/9 small
8
small interfering
8
attenuated set7/9
8
inflammatory
7
role histone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!