Learning-specific changes in long-term depression in adult perirhinal cortex.

J Neurosci

Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, University of Bristol, Bristol BS8 1TD, United Kingdom.

Published: July 2008

Learning is widely believed to involve synaptic plasticity, using mechanisms such as those used in long-term potentiation (LTP). We assess whether the mechanisms used in alternative forms of plasticity, long-term depression (LTD) and depotentiation, play a role in learning. We have exploited the involvement of the perirhinal cortex in two different forms of learning to compare simultaneously, within the same brain region, their effects on LTD and depotentiation. Multiple-exposure learning but not single-exposure learning in vivo prevented, in a muscarinic receptor-dependent manner, subsequent induction of LTD and depotentiation, but not LTP, in perirhinal cortex in vitro. The contrast in the effects of the two types of learning under these particular experimental conditions indicate that the in vitro change is unlikely to be attributable to synapse-specific plastic changes registering the precise details of the individual learned associations. Instead, it is concluded that the lack of LTD and depotentiation arises from, and establishes the importance of, a learning-related generalized change in plasticity gain. The existence of this additional mechanism has important implications for interpretations of how plasticity relates to learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670846PMC
http://dx.doi.org/10.1523/JNEUROSCI.1935-08.2008DOI Listing

Publication Analysis

Top Keywords

perirhinal cortex
12
long-term depression
8
learning
7
learning-specific changes
4
changes long-term
4
depression adult
4
adult perirhinal
4
cortex learning
4
learning believed
4
believed involve
4

Similar Publications

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear.

View Article and Find Full Text PDF

The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

The Anatomy of Context.

Hippocampus

January 2025

Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.

For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!