The programmed death (PD)-1 interacts with its ligand (PDL-1) delivering a negative signal to T cells. During human immunodeficiency virus (HIV)-1 infection PD-1 and PDL-1 expressions are increased. Here we show that monocytes and CCR5(+) T cells of HIV-uninfected donors upregulated PDL-1 upon in vitro exposure to HIV. HIV-induced PDL-1 required interferon (IFN)-alpha, but not IFN-gamma, production. Inhibition of endocytosis, required for HIV-induced IFN-alpha production, prevented PDL-1 upregulation. IFN-alpha-inducing Toll-like receptor (TLR) agonists increased PDL-1 on monocytes and CCR5(+) T cells. CD80 and CD86 were also increased on monocytes and CCR5(+) T cells after HIV exposure, but only CD80 was IFN-alpha-dependent. IFN-alpha-receptor subunit 2 (IFNAR2), was expressed only by CCR5(+) T cells and monocytes, explaining why these leukocytes responded to HIV-induced IFN-alpha. Finally, T cell proliferation was improved by PDL-1 blockade in HIV-treated PBMC. In the setting of HIV infection, IFN-alpha may negatively affect T cell responses by inducing PDL-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771672 | PMC |
http://dx.doi.org/10.1016/j.clim.2008.05.009 | DOI Listing |
Nat Commun
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.
View Article and Find Full Text PDFNat Commun
January 2025
Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare, naturally occurring, homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here, we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human, mobilized hematopoietic stem progenitor cells (HSPC), resulting in a transplant that undergoes normal hematopoiesis, produces CCR5 null T cells, and renders xenograft mice refractory to HIV infection.
View Article and Find Full Text PDFViruses
November 2024
Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India.
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants.
View Article and Find Full Text PDFCells
December 2024
Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France.
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Bioengineering, Universitat International de Catalunya, 08028 Barcelona, Spain.
: Percutaneous electrolysis is an invasive physical therapy technique that is receiving attention. The objective of this article is to evaluate the biological and cellular effects of percutaneous electrolysis and its influence on tissue healing processes. .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!