Transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. Decorin, a small proteoglycan in the extracellular matrix, binds to TGF-beta1 and modulates the activity of TGF-beta1 during muscle cell growth and development. However, its interaction with TGF-beta1 and involvement in myogenesis is not well characterized. In the present study, chicken myogenic satellite cells, myogenic precursors for muscle growth and repair, were isolated from the pectoralis major muscle and used to investigate the biological function of TGF-beta1 and decorin during myogenesis. The over-expression of decorin in satellite cells significantly increased cell proliferation, compared to the control cells. Consistent with this result, reducing decorin expression decreased cell proliferation, which suggests a decorin-mediated mechanism is involved in the regulation of myogenic satellite cell proliferation. Satellite cells over-expressing decorin were less sensitive to TGF-beta1 during proliferation, which indicates that decorin may sequester TGF-beta1 leading to increased proliferation. During satellite cell differentiation, the over-expression of decorin induced differentiation by increasing the muscle specific creatine kinase concentration. However, the addition of TGF-beta1 diminished decorin-mediated cell responsiveness to TGF-beta1 during differentiation. Taken together, these results suggest that decorin induces myogenic satellite cell proliferation and differentiation by regulating cellular responsiveness to TGF-beta1. An alternative TGF-beta1-independent pathway may be involved in the regulation of satellite cells by decorin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2008.06.002DOI Listing

Publication Analysis

Top Keywords

cell proliferation
24
satellite cells
20
myogenic satellite
16
satellite cell
16
transforming growth
12
growth factor-beta1
12
proliferation differentiation
12
differentiation decorin
12
cell
10
decorin
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!