The temporal-spatial trends of soil total iron concentration (Fet), free degree (Fed/Fet), activation degree (Feo/Fed) and complex degree (Fep/Fed) of soil iron oxides after reclamation were studied in Sanjiang Plain Wetlands. The result suggests that Fet in the upper tillage layers (0 - 20 cm) are influenced by reclamation more significantly than that in the lower ones (20 - 100 cm), and so does the early ages (0 - 1 years) than the late ages (1 - 25 years). Fet is negatively correlated with organic matter extremely significantly (R = - 0.62), while that with total phosphorus and pH are not significant. Fet of soil layer I (0 - 10 cm) increases obviously during the first 7 years after reclamation, and tends to become stable after 13 years, while those ages of soil layer II (10 - 20 cm) are 8 years and 15 years respectively. Soil layer I shows shorter responding time and better regularity than layer II. Fed/Fet increases rapidly after reclamation, decreases later and then increases again. Feo/Fed indicates exponential decrease with the reclamation ages as well as Fep/Fed. Feo/Fed of layer I decreases radically during the first 4 years after reclamation and tends to become stable after 13 years, while that of layer II decreases dramatically within the first year and keeps stable henceforth. The counterparts of Fep/Fed are 6 years, 14 years, and 2 years respectively. With the fitted experimental equations of Fet, Feo/Fed, and Fep/Fed, the ages of reclamation can be deduced reversely, which indicates the implication of iron on the shifts of soil environment.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin, China.
Adv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
November 2024
Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.
View Article and Find Full Text PDFISME Commun
January 2025
J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China.
A new in situ fracturing-enhanced oxidative remediation approach was recommended in this study to achieve rapid and efficient remediation of low-permeability contaminated sites. The objective of this study was to evaluate the effects of permeability and potassium permanganate (KMnO) concentration on the oxidation effectiveness and kinetics of KMnO in phenanthrene (PHE)-contaminated soil through rigid-wall hydraulic conductivity tests and a series of laboratory experiments. The results indicate that for various low-permeability contaminated soils, there was a critical KMnO concentration to significantly reduce the remediation time and a critical Darcy velocity to meet remediation goals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!