Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-008-1565-4DOI Listing

Publication Analysis

Top Keywords

t-rflp analysis
20
analysis 16s
12
16s rrna
12
rrna genes
12
microbial communities
12
terminal restriction
8
restriction fragment
8
fragment length
8
length polymorphism
8
polymorphism t-rflp
8

Similar Publications

Endophytic diazotrophic communities from rice roots are diverse and weakly associated with soil diazotrophic community composition and soil properties.

J Appl Microbiol

July 2024

Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, Uruguay.

Aim: Bacteria that promote plant growth, such as diazotrophs, are valuable tools for achieving a more sustainable production of important non-legume crops like rice. Different strategies have been used to discover new bacteria capable of promoting plant growth. This work evaluated the contribution of soil diazotrophs to the endophytic communities established in the roots of rice seedlings cultivated on seven representative soils from Uruguay.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of small intestinal bacterial overgrowth and changes in gut microbiota in patients with liver cirrhosis, linking them to bacterial translocation and potential infections.
  • Researchers analyzed duodenal samples and bacterial DNA from 103 cirrhosis patients compared to 22 non-liver disease controls, using advanced genetic sequencing techniques.
  • Results showed that cirrhosis patients had unique bacterial profiles in the duodenum, marked by higher levels of certain bacteria like Streptococcus, while overall bactDNA levels in blood and duodenal fluid were similar to controls, suggesting a specific dysbiosis associated with liver disease.
View Article and Find Full Text PDF

To study the effects of organic fertilizer combined with biochar on soil denitrification and denitrifying microbial community structure, this study took lemon orchard soil as the research object and adopted a pot experiment, setting up five fertilization treatments:no fertilization(CK), conventional fertilization(F), organic fertilizer(P), fertilizer+biochar(FP), and organic fertilizer+biochar(PP). The abundance and community structure of denitrifying microorganisms were studied using real-time quantitative PCR and T-RFLP. Redundancy analysis(RDA) was used to explore the environmental factors affecting the denitrifying microbial community structure, and PLS-PM analysis was used to explore the environmental factors affecting the denitrification potential of lemon orchard soil.

View Article and Find Full Text PDF

The effects of manure and chemical fertilizer combined with biochar on nitrification potential and ammonia oxidation microbial change characteristics of purple soils were studied to explore the effects of fertilization measures and soil environmental factors on nitrification potential and ammonia oxidation microbial change characteristics. In this study, purple soil was taken as the research object, and five treatments were set up:no fertilizer(CK), chemical fertilizer(F), manure(P), chemical fertilizer plus biochar(FP), and manure plus biochar(PP). PCR and T-RFLP methods were used to study the characteristics of soil AOA and AOB communities, and soil nitrification potential and environmental factors were measured at the same time to determine the effect of manure combined with biochar on the nitrification potential of purple soil.

View Article and Find Full Text PDF

Prostaglandin I suppresses the development of gut-brain axis disorder in irritable bowel syndrome in rats.

Biochim Biophys Acta Gen Subj

May 2023

Department of General Medicine, Asahikawa Medical University, Japan; Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan. Electronic address:

In this study, we attempted to clarify a role of prostaglandin (PG) I and its specific receptor, IP in the pathogenesis of irritable bowel syndrome (IBS) using a maternal separation (MS)-induced IBS model. Administration of beraprost (BPS), a specific IP agonist, improved visceral hypersensitivity and depressive state with decreased serum CRF level in the IBS rats. To clarify the mechanism of the effect of BPS, we performed serum metabolome analysis and 1-methylnicotinamide (1-MNA) was identified as a possible candidate for a clue metabolite of pathogenesis of IBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!