Replication-conditional (oncolytic) mutants of herpes simplex virus (HSV), are considered promising therapeutic alternatives for human malignancies, and chemotherapeutic adjuvants are increasingly sought to augment their efficacy. Histone deacetylase (HDAC) inhibitors are a new class of antineoplastic agents because of their potent activity in growth arrest, differentiation, and apoptotic death of cancer cells. The ability of the HDAC inhibitors to upregulate exogenous transgene expression and inhibit interferon (IFN) responses prompted our exploration of their use in improving the antitumor efficacy of oncolytic HSV. We discovered that the yield of viral progeny increased significantly when cultured glioma cells were treated with HDAC inhibitors before viral infection. Valproic acid (VPA), a commonly used antiepileptic agent with HDAC inhibitory activity, proved most effective when used to treat glioma cells before viral infection, but not concomitantly with viral infection. Pretreatment with VPA inhibited the induction of several IFN-responsive antiviral genes, augmented the transcriptional level of viral genes, and improved viral propagation, even in the presence of type I IFNs. Moreover, VPA pretreatment improved the propagation and therapeutic efficacy of oncolytic HSV in a human glioma xenograft model in vivo. These findings indicate that HDAC inhibitors can improve the efficacy of tumor virotherapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/mt.2008.155 | DOI Listing |
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Istanbul University, Faculty of Science, Department of Biology, Istanbul, Türkiye.
In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.
View Article and Find Full Text PDFSci Rep
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!