The salinity of industrial wastewater evaporation ponds was artificially increased from 3-7% to 12-16% (w/v), in an attempt to reduce the activity of sulfate-reducing bacteria (SRB) and subsequent emission of H2S. To investigate the changes in bacterial diversity in general, and SRB in particular, following this salination, two sets of universal primers targeting the 16S rRNA gene and the functional apsA [adenosine-5'-phosphosulfate (APS) reductase alpha-subunit] gene of SRB were used. Phylogenetic analysis indicated that Proteobacteria was the most dominant phylum both before and after salination (with 52% and 68%, respectively), whereas Firmicutes was the second most dominant phylum before (39%) and after (19%) salination. Sequences belonging to Bacteroidetes, Spirochaetes and Actinobacteria were also found. Several groups of SRB from Proteobacteria and Firmicutes were also found to inhabit this saline environment. Comparison of bacterial diversity before and after salination of the ponds revealed both a shift in community composition and an increase in microbial diversity following salination. The share of SRB in the 16S rRNA gene was reduced following salination, consistent with the reduction of H2S emissions. However, the community composition, as shown by apsA gene analysis, was not markedly affected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2008.00549.x | DOI Listing |
Sci Rep
January 2025
Center for Research and Conservation of Biodiversity, Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
Our understanding of the basic relationships of microbiota associated with flowers is still quite limited, especially regarding parasitic plant species. The transient nature of flower parts such as pistil stigmas provides a unique opportunity for temporal investigations. This is the first report of the analysis of bacterial and fungal communities associated with the pistil stigmas of the lucerne parasite, Orobanche lutea.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:
Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.
View Article and Find Full Text PDFJ Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Plant Dis
January 2025
50 Yonsei-ro, Seodaemun-guSeoul, Korea (the Republic of), 03722;
Fire blight, a devastating bacterial disease affecting rosaceous plants such as apples and pears, is caused by . The disease, known for its rapid spread and destructive potential, can lead to severe symptoms and often result in the death of infected plants. In Korea, the observation of was first recorded in 2015, and subsequent dissemination has been noted across the peninsula.
View Article and Find Full Text PDFISME J
January 2025
Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia.
Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!