Characterization of the oligomerization of membrane-associated peptides is important to understand the folding and function of biomolecules like antimicrobial peptides, fusion peptides, amyloid peptides, toxins, and ion channels. However, this has been considered to be very difficult, because the amphipathic properties of the constituents of the cell membrane pose tremendous challenges to most commonly used biophysical techniques. In this study, we present the application of a simple (14)N solid-state NMR spectroscopy of aligned model membranes containing a phosphatidyl choline lipid to investigate the oligomerization of membrane-associated peptides. Since the near-symmetric nature of the choline headgroup of a phosphocholine lipid considerably reduces the (14)N quadrupole coupling, there are significant practical advantages in using (14)N solid-state NMR experiments to probe the interaction of peptide or protein with the surface of model membranes. Experimental results for several membrane-associated peptides are presented in this paper. Our results suggest that the experimentally measured (14)N quadrupole splitting of the lipid depends on the peptide-induced changes in the electrostatic potential of the lipid bilayer surface and therefore on the nature of the peptide, peptide-membrane interaction, and peptide-peptide interaction. It is inferred that the membrane orientation and oligomerization of the membrane-associated peptides can be measured using (14)N solid-state NMR spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja802210uDOI Listing

Publication Analysis

Top Keywords

solid-state nmr
16
membrane-associated peptides
16
nmr spectroscopy
12
oligomerization membrane-associated
12
14n solid-state
12
spectroscopy aligned
8
peptides
8
model membranes
8
14n quadrupole
8
measured 14n
8

Similar Publications

Deciphering the Topology of Sitagliptin Using an Integrated Approach.

ACS Omega

January 2025

Science Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.

Determining the structure of sitagliptin is crucial for ensuring its effectiveness and safety as a DPP-4 inhibitor used to treat type 2 diabetes. Accurate structure determination is vital for both drug development and maintaining quality control in manufacturing. This study integrates the advanced techniques of solid-state nuclear magnetic resonance (NMR) spectroscopy, three-dimensional (3D) electron diffraction, and density functional theory (DFT) calculations to investigate the structural intricacies of sitagliptin.

View Article and Find Full Text PDF

Anchoring Ag(I) into MOF-253 for Effectively Catalyzing Cycloaddition of CO with Alkynyl Alcohols/Amine under Ambient Conditions.

Inorg Chem

January 2025

Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China.

In the era of global warming, the conversion of carbon dioxide into high-value products has become a widely scrutinized emerging mitigation strategy. Metalation of bpy-containing MOF-253 led to the synthesis of MOF-253-0.5Ag, which acts as an efficient catalyst for the carbonylative cyclization of CO with alkyne molecules (such as propynyl alcohols and propynyl amines) at room temperature and ambient CO pressure, yielding the corresponding α-alkyl cyclic carbonates and oxazolidinones, thus endowing the catalytic system with bifunctional characteristics.

View Article and Find Full Text PDF

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

NMR and MD Simulations of Non-Ionic Surfactants.

Molecules

January 2025

Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA.

Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation.

View Article and Find Full Text PDF

This work describes the synthesis of ordered 3D siloxane-silsesquioxane reticular materials with silicate D4R cubes (SiO), harvested from a sacrificial tetrabutylammonium cyclosilicate hydrate (TBA-CySH) precursor, interlinked with octyl and dicyclopentyl (Cp) hydrocarbon functionalities in a one-step synthesis with organodichlorosilanes. Advanced solid-state NMR spectroscopy allowed us to unravel the molecular order of the nodes and their interconnection by the silicone linkers. In the case of octyl-methyl silicone linkers, changing the silane-to-silicate ratio in the synthesis allowed for tuning the length of the linker between the nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!