The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic800490tDOI Listing

Publication Analysis

Top Keywords

zero-field splitting
8
mononuclear manganeseiii
8
mononuclear mniii
8
magnetic susceptibility
4
susceptibility ground-state
4
ground-state zero-field
4
splitting high-spin
4
mononuclear
4
high-spin mononuclear
4
manganeseiii inverted
4

Similar Publications

In this study, low-temperature EPR spectroscopy and quantum-chemical techniques were employed to investigate multispin systems─1,5-diphenyl-3-(3-nitrenophenyl)-6-oxoverdazyl and 1,5-diphenyl-3-(4-nitrenophenyl)-6-oxoverdazyl─that contain a nitrene center at either a - or -position, respectively. Ground states and magnetic zero-field splitting (ZFS) parameters of these multispin systems were determined by experimental and computational methods. The results indicated that the high-spin quartet state is a ground state, and the quartet-doublet energy gap is close to 10 kcal/mol for the -position of the nitrene group, with ZFS parameters = 0.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on stable monocoordinated organobismuthinidenes have revealed unique chemical and electronic structures.
  • Quantum chemical calculations indicated that Bu-MFluind-Bi(I) has a triplet ground state with a significant zero-field splitting (ZFS) greater than 4500 cm, which had not been verified experimentally before.
  • This research successfully measured a ZFS of 5422 cm using magneto-optical infrared spectroscopy, marking the highest ZFS recorded to date.
View Article and Find Full Text PDF

The photophysics of naphthalimide (NI)-phenothiazine (PTZ) dyads were investigated as electron donor-acceptor (D-A) thermally activated delayed fluorescence (TADF) emitters. Femtosecond transient absorption (fs-TA) spectra show that the photophysical processes in non-polar solvents are in singlet localized state (LE, = 0.8 ps) → Franck-Condon singlet charge separation state (CS, = 7.

View Article and Find Full Text PDF

Simultaneously Detecting the Power and Temperature of a Microwave Sensor via the Quantum Technique.

Micromachines (Basel)

October 2024

Key Laboratory of Instrumentation Science and Dynamic Measurement, School of Instrument and Electronics, North University of China, Taiyuan 030051, China.

This study introduces a novel method for the simultaneous detection of microwave sensor power and temperature, leveraging nitrogen-vacancy (NV) centers as a robust quantum system. Through precise measurement of the optical detection magnetic resonance contrast in NV centers, the microwave power is accurately determined. Furthermore, the temperature of the sensor is obtained by monitoring the variations in zero-field splitting and thorough spectral analysis.

View Article and Find Full Text PDF

Intersystem Crossing, Photo-Induced Charge Separation and Regioisomer-Specific Excited State Dynamics in Fully Rigid Spiro Rhodammine-Naphthalene/Anthraquinone Electron Donor-Acceptor Dyads.

Chemistry

November 2024

Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.

We prepared a series fully rigid spiro electron donor-acceptor orthogonal dyads, with closed form of rhodamine (Rho) as electron donor and naphthalene (Np)/anthraquinone (AQ) as electron acceptor, to access the long-lived triplet charge separation (CS) state, via the electron spin control method. We found strong dependency of the photophysical property of the dyads on the amino substitution positions of the Np chromophores in the dyads 1,8-DaNp-Rho and 2,3-DaNp-Rho. Nanosecond transient absorption (ns-TA) spectra show the population of the LE state (lifetime: 47 μs) for 2,3-DaNp-Rho, however, long-lived CS state was observed (τ=0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!