The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20947DOI Listing

Publication Analysis

Top Keywords

type spermatogonia
36
rainbow trout
24
molecular marker
12
type
12
marker type
12
spermatogonia
10
identification molecular
8
microarray analysis
8
gonadal cells
8
spermatogonia fish
8

Similar Publications

B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper .

Genes (Basel)

November 2024

Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Background/objectives: We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper carrying B chromosomes (type B1).

Methods: The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Background: Diabetes mellitus is a widely distributed endocrine disorder in the world. Altered reproductive function is a notable long-term consequence of type 1 diabetes mellitus (T1DM). In the current study, we assessed the effects of soya milk containing Lactobacillus casei and omega-3 on stereology of testes in type 1 diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!