A miniature ion trap mass analyzer was applied to the analysis of traces of hydrocarbons and simple heteroatomics in the vapor phase and in aqueous solution. Vapors of acetone, acetic acid, acetonitrile, benzene, butanethiol, carbon disulfide, hexane, dichloromethane, naphthalene, toluene and xylenes were detected and quantified using solid sorbent trapping and, in some cases, by passage through a membrane interface. Aqueous solutions of benzene, toluene, xylenes, hexane and a petroleum naphtha distillate were examined using the membrane interface. Sampling, detection and identification of all compounds was completed in times of less than one minute. The gas-phase samples of toluene and benzene were detected at 200 ppt (limit of detection, LOD) for toluene and 600 ppt for benzene. Identification of benzene and xylene in aqueous solutions was readily achieved with LODs of 200 and 400 ppb, respectively. Quantification over a linear dynamic range of two orders of magnitude for the aqueous samples and three orders of magnitude for the vapor-phase samples was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b805813j | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China. Electronic address:
In nuclear wastewater treatment, ion-scavenging materials designed to trap TcO is urgently needed. However, strong acid/base, high radiation and high salt concentration of nuclear wastewater usually result in inadequate stability and adsorption capacity of the adsorbent. Herein, we report a new class of bifunctional anion-exchange olefin-linked COF (BPDC-MTMP) prepared via Knoevenagel condensation reactions, the first example exploring the synergistic integration of positively charged fragments at both nodes and linkers.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da.
View Article and Find Full Text PDFAnal Chem
January 2025
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany.
The identification of polar and neutral lipid species as biomarkers in complex biological samples is a key task in clinical and life sciences. Electrospray and plasma-based ionization techniques are necessary to cover the full range of lipidomes, owing to their limited molecular polarity ranges. However, combining both to generate hybrid spectra is difficult without averaging spectra, as electrospray and plasma sources operate under vastly different conditions.
View Article and Find Full Text PDFDrug Test Anal
January 2025
Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
Rapid and comprehensive qualitative and quantitative analytical procedures are crucial in 24/7 emergency toxicology (ET) to support diagnosis and treatment of acute intoxications and to monitor their progression and efficacy of detoxification strategies. This study aimed to develop the simultaneous qualitative and quantitative analysis of 62 drugs, as well as seven active metabolites in human blood plasma using an automated liquid chromatography (LC)-linear ion trap mass spectrometry (MS) screening system. Sample preparation was conducted by liquid-liquid extraction, and plasma concentrations were determined using an electronically stored 5-point calibration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!