Leptin, a 167-amino acid peptidic hormone secreted by adipose tissue, acts mainly in the arcuate hypothalamus nucleus as a satiety signal, but given its closed connections with inflammatory and endothelial systems, a probable regulatory role in blood pressure (BP) control by interaction with nitric oxide (NO) and C-reactive protein (CRP) has also been described. The cold pressor test (CPT) is a simple test that indirectly determines endothelial dysfunction. In this work, biochemical indicators (CRP, leptin, and NO) and hemodynamic indicators (systolic and diastolic BP) were performed and evaluated in patients with hypertension, patients with type 2, and control subjects during a single CPT for assessment of endothelial dysfunction. A total of 43 subjects aged 25 to 60 years were divided into three groups: 15 healthy volunteers, 13 patients with hypertension, and 15 patients with type 2 diabetes were included in the study. A complete clinical history was obtained from each subject and a complete physical examination, including an electrocardiogram, was carried out. During the 30-minute assay, 0.9% saline solution was infused intravenously. CPT was performed to assess the cardiovascular reactivity at 15 minutes. The cardiovascular variables (systolic and diastolic BP) were measured at 0, 16, and 30 minutes. In addition, serum variables were extracted at the beginning and at the end of the experiment and statistical analysis was performed. CPT caused in all subjects a significant increase in BP and pulse. There were no significant differences in CRP or leptin in all groups, although we observed significant differences for NO (P < 0.05). Sensibility and specificity for all biochemical variables resulted in nonsignificant statistical or clinical importance as markers of endothelial dysfunction; however, a positive association was found when leptin and NO were evaluated together (sensibility, 0.2; specificity, 0.8). CRP, leptin, and NO did not show any direct or significant association with the hemodynamic variables in this study, although a relationship was observed in NO according to group and among biochemical variables when studied together.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MJT.0b013e318169bca8DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
patients hypertension
12
hypertension patients
12
patients type
12
crp leptin
12
markers endothelial
8
type diabetes
8
cold pressor
8
pressor test
8
systolic diastolic
8

Similar Publications

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis.

Gene

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China. Electronic address:

Background: Endothelial cell dysfunction has a critical role in the pathophysiology of atherosclerosis. This study aims to uncover pivotal genes and pathways linked to endothelial cell dysfunction in atherosclerosis, as well as to ascertain the assumed causal effects and potential mechanisms.

Methods: Datasets relevant to endothelial cell dysfunction in atherosclerosis were collected and divided into training and validation sets.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Novel Tryptophyllin Peptides from Physalaemus centralis Inhibit Oxidative Stress-Induced Endothelial Dysfunction in Rat Aorta Preparation.

Toxicon

January 2025

Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil. Electronic address:

Amphibian skin is a rich source of molecules with biotechnological potential, including the tryptophyllin family of peptides. Here, we report the identification and characterization of two tryptophyllin peptides, FPPEWISR and FPWLLS-NH, from the skin of the Central Dwarf Frog, Physalaemus centralis. These peptides were identified through cDNA cloning and sequence comparison.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!