Endothelial dysfunction symbolizes several pathological conditions, including altered anticoagulant and anti-inflammatory properties of the endothelium, impaired modulation of vascular growth, and dysregulation of vascular remodeling. Nevertheless, this term has been used commonly to refer to an impairment of endothelium-dependent vasorelaxation caused by a loss of nitric oxide bioactivity. The clinical and scientific relevance of nitric oxide synthesis and bioavailability in endothelial dysfunction is based on the fact that it is a common factor in the pathogenesis of cardiovascular diseases. These alterations have been demonstrated in both animal models and humans, in the scope of dangerous pathological conditions such as cigarette smoking, hypertension, hypercholesterolemia, aging, diabetes, and heart failure. A decline in nitric oxide bioavailability may be caused by decreased expression of the endothelial nitric oxide synthase, a reduction of substrate or cofactors for this enzyme, alterations of cellular signaling, enzyme inhibition by asymmetric dimethyl arginine, and, finally, accelerated nitric oxide degradation by reactive oxygen species. The knowledge of the processes related to these alterations becomes of remarkable importance for understanding the generation of innovative and effective therapeutic strategies for cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MJT.0b013e318160bedaDOI Listing

Publication Analysis

Top Keywords

nitric oxide
24
endothelial dysfunction
12
oxide synthesis
8
pathological conditions
8
cardiovascular diseases
8
nitric
6
oxide
6
molecular mechanisms
4
endothelial
4
mechanisms endothelial
4

Similar Publications

Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!