Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cytochrome P450 3A4, a major drug-metabolizing enzyme in man, is well known to show non-Michaelis-Menten steady-state kinetics for a number of substrates, indicating that more than one substrate can bind to the enzyme simultaneously, but it has proved difficult to obtain reliable estimates of exactly how many substrate molecules can bind. We have used a simple method involving studies of the effect of large inhibitors on the Hill coefficient to provide improved estimates of substrate stoichiometry from simple steady-state kinetics. Using a panel of eight inhibitors, we show that at least four molecules of the widely used CYP3A4 substrate 7-benzyloxyquinoline can bind simultaneously to the enzyme. Computational docking studies show that this is consistent with the recently reported crystal structures of the enzyme. In the case of midazolam, which shows simple Michaelis-Menten kinetics, the inhibitor effects demonstrate that two molecules must bind simultaneously, consistent with earlier evidence, whereas for diltiazem, the experiments provide no evidence for the binding of more than one molecule. The consequences of this "inhibitor-induced cooperativity" for the prediction of pharmacokinetics and drug-drug interactions are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.108.021733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!