Effect of high glucose levels in human platelet NTPDase and 5'-nucleotidase activities.

Diabetes Res Clin Pract

Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.

Published: September 2008

Objectives: The objective of this work was to evaluate the effect of different glucose levels on the ATP, ADP and AMP hydrolysis in the platelets of diabetic, hypertensive and diabetic/hypertensive participants.

Methods: The activities of the enzymes NTPDase (ATP and ADP hydrolysis) and 5'-nucleotidase (AMP hydrolysis), and CD39 expression were analyzed in human blood platelets of diabetic (DM-2), hypertensive (HT) and diabetic/hypertensive (DM-2/HT) patients. To evaluate the interference of glucose and fructose in NTPDase and 5'-nucleotidase activities, experiments were performed with glucose, fructose and mannitol concentrations ranging from 5 to 30 mM in platelet-rich plasma (PRP). Pre-incubation times of 10, 120 min and 24h were used.

Results: NTPDase and 5'-nucleotidase activities increased with increasing glucose and fructose concentrations (P<0.001) and the different times of pre-incubation did not interfere in ectonucleotidases activities (P>0.5). NTPDase and 5'-nucleotidase activities demonstrated a positive correlation between serum glucose levels and ATP and ADP hydrolysis in DM-2 and DM-2/HT patients. CD39 expression demonstrated that DM-2, HT and DM-2/HT groups presented a significant increase when compared to the control group (P<0.004).

Conclusion: The hydrolysis of adenine nucleotides is enhanced in platelets of patients with diabetes and hypertension. We observed that an increasing glucose concentration had a direct effect on ATP, ADP and AMP hydrolysis. Furthermore, CD39 expression was enhanced in all patients groups, indicating that these enzyme activities are related with diabetes and hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabres.2008.06.001DOI Listing

Publication Analysis

Top Keywords

ntpdase 5'-nucleotidase
16
5'-nucleotidase activities
16
glucose levels
12
atp adp
12
glucose fructose
12
levels atp
8
amp hydrolysis
8
platelets diabetic
8
hypertensive diabetic/hypertensive
8
adp hydrolysis
8

Similar Publications

Ectonucleotidase inhibitors: an updated patent review (2017-2023).

Expert Opin Ther Pat

November 2024

Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Article Synopsis
  • The main enzymes responsible for breaking down nucleotides at the cell surface are NTPDases, ENPPs, alkaline phosphatases, and e5'NT, which can influence various health conditions like cancer and inflammation, making them potential therapeutic targets.
  • This review focuses on ectonucleotidase inhibitors, including both nucleoside/nucleotide analogues and bicyclic compounds, that have been patented between 2017 and 2023, highlighting their chemistry and clinical applications.
  • The review emphasizes the importance of nucleotides in regulating key physiological processes and discusses the therapeutic potential of small molecules that affect ectonucleotidase activity, including advancements in combination therapy and selectivity.
View Article and Find Full Text PDF

Platelets isolation and ectonucleotidase assay: Revealing functional aspects of the communication between the vasculature and the immune system.

J Immunol Methods

October 2024

Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil. Electronic address:

Platelets are enucleated fragments of cells with a diversity of internal granules. They are responsible for functions related to hemostasis, coagulation, and inflammation. The activation of these processes depends on a cascade coordinated by cytokines, chemokines, and components of purinergic signaling, such as ATP, ADP, and adenosine.

View Article and Find Full Text PDF

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine.

View Article and Find Full Text PDF

Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects.

Mol Neurobiol

October 2024

Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil.

The aim of this study was to investigate the antiglioma effect of Cecropia pachystachya Trécul (CEC) leaves extract against C6 and U87 glioblastoma (GB) cells and in a rat preclinical GB model. The CEC extract reduced in vitro cell viability and biomass. In vivo, the extract decreased the tumor volume approximately 62%, without inducing systemic toxicity.

View Article and Find Full Text PDF

Vitamin D3 mitigates type 2 diabetes induced by a high carbohydrate-high fat diet in rats: Role of the purinergic system.

J Nutr Biochem

May 2024

Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil. Electronic address:

This study evaluated the effect of vitamin D (VIT D) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1β, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D 12 µg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!