Lipoic acid (LA) has been reported as a potential therapeutic agent due its antioxidants proprieties. It was considered its effect in different organs (gills, brain, muscle and liver) of the fish Corydoras paleatus (Callychthyidae). LA (70 mg/kg of body mass) was added to a commercial fish diet, organisms being fed daily (1% body weight). Sixty animals (mean mass: 2.37+/-0.09 g) were placed randomly in aquariums and received (+LA) or not (-LA) lipoic acid enriched diet during four weeks. After, fish were killed and the brain, muscle, gills and liver were dissected. LA treatment reduced significantly (p<0.05) reactive oxygen species concentration in brain and increased (p<0.05) glutamate-cysteine ligase activity in brain and liver of the same experimental group. LA fed organisms showed higher (p<0.05) brain glutathione-S-transferase activity, indicating that LA improves the detoxification and antioxidant capacity face components that waste glutathione in phase II reactions. A conspicuous reduction of protein oxidation was observed in muscle and liver of +LA organisms, indicating that the treatment was also effective in reducing oxidative stress parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2008.06.011 | DOI Listing |
Biomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Physiology, Medical Specialization Training Center (TUSMER), 06230 Ankara, Türkiye.
This study aimed to investigate the protective effects of vitamin B complex and alpha-lipoic acid (ALA) pre-treatments on hepatic ischemia-reperfusion injury (IRI) in rats, focusing on their potential to enhance antioxidant defense mechanisms and reduce post-ischemic liver damage. Thirty male Wistar albino rats were divided into four groups: sham group (n = 10), IRI group (n = 10), vitamin B group (n = 10), vitamin B + ALA group (n = 10). In the IRI, vitamin B, and vitamin B + ALA groups, the rats underwent 45 min of hepatic ischemia followed by 60 min of reperfusion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Mechanical Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu City 610106, China. Electronic address:
Chitosan is a bio-based material that is more environmentally friendly than traditional petroleum-based materials, but its biofilms often suffer from brittleness and limited antioxidant and antibacterial properties. To overcome these challenges, chemically modified chitosan is a key solution. Herein, a novel CS-LA/CHA films were prepared through a radical reaction of chitosan (CS), lipoic acid/chalcone derivative (LA/CHA) and N,N-methylene bisacrylamide (MBA).
View Article and Find Full Text PDFFront Neurosci
December 2024
Office of Research and Innovation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
Oxidative stress, caused by an imbalance between the generation of reactive oxygen species (ROS) and the body's intrinsic antioxidant defenses, plays a critical role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. Beyond these conditions, recent evidence indicates that dysregulated redox balance is implicated in neuropsychiatric disorders, including schizophrenia, major depressive disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic plasticity, reducing microglial overactivation and promoting synaptogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!