Microglial clearance function in health and disease.

Neuroscience

Institute of Reconstructive Neurobiology, University Bonn LIFE & BRAIN Center, University Bonn and Hertie-Foundation, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.

Published: February 2009

Microglial cells are of hematopoietic origin, populate the CNS during early development and form the brain's innate immune cell type. Besides their well-known role in immune defense, microglia have an active and homeostatic function in the normal CNS based on high motility of their ramified processes and endocytic clearance of apoptotic vesicular material. During development microglia contribute to the reorganization of neuronal connections, however microglia have also pivotal roles during acute and chronic neurodegeneration. Microglia become attracted to site of injury by nucleotides released from damaged neurons. Scavenger receptors expressed on microglia bind to debris and microglial phagocytic receptors signal via immunoreceptor tyrosine-based activation motif (ITAM)--containing adaptor proteins to promote phagocytosis of extracellular material. Insufficient clearance by microglia appears to be prevalent in neurodegenerative diseases such as Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2008.06.046DOI Listing

Publication Analysis

Top Keywords

microglia
6
microglial clearance
4
clearance function
4
function health
4
health disease
4
disease microglial
4
microglial cells
4
cells hematopoietic
4
hematopoietic origin
4
origin populate
4

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit.

Life Sci

January 2025

Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea. Electronic address:

Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE.

View Article and Find Full Text PDF

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!