A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. | LitMetric

A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development.

Fungal Genet Biol

Department of Plant Pathology, University of Florida, 1453 Fifield Hall, Gainesville, FL 32611-0680, USA.

Published: September 2008

Apothecial development is the multicellular, sexual reproduction phase in the developmental life cycle of Sclerotinia sclerotiorum. This development begins within the sclerotium, a compact aggregation of vegetative hyphae contained within a melanized rind layer. Upon germination from the sclerotium, the apothecial stipe requires exposure to UV-A wavelengths of light to develop a fertile disc. We have identified a gene, cry1 from S. sclerotiorum that is most closely related to photolyase/cryptochrome proteins in the CRY-DASH family. We characterized this CRY-DASH ortholog from S. sclerotiorum and observed significant transcript accumulation only after exposure to UV-A and not in response to other wavelengths of light. Tissue-specific expression studies revealed that cry1 transcripts accumulate to low levels in vegetative mycelia and to higher levels in all light-exposed stages of apothecia development. Maximal cry1 transcript accumulation occurs in stipes between 2 and 6h of continuous UV-A exposure. Mutant strains carrying a deletion of cry1 exhibited a decrease in sclerotial mass and displayed greater numbers of pigmented hyphal projections on apothecial stipes under UV-A treatment but are otherwise developmentally normal. Tissue level localization of Cry1-GFP protein accumulation expressed from the native cry1 promoter was consistent with transcript localization. This study suggests that cry1 may have a function during UV exposure but is not essential for completing the developmental life cycle under laboratory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2008.06.004DOI Listing

Publication Analysis

Top Keywords

sclerotinia sclerotiorum
8
developmental life
8
life cycle
8
exposure uv-a
8
wavelengths light
8
transcript accumulation
8
cry1
6
cry-dash-type photolyase/cryptochrome
4
photolyase/cryptochrome sclerotinia
4
sclerotiorum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!