Math2 (NEX-1/NeuroD6) is a member of the basic helix-loop-helix transcription factor family and is involved in neuronal differentiation and maturation. In this study, we identified the genes targeted by Math2 using DNA microarrays and cultured rat cortical cells transfected with Math2. Of the genes regulated by Math2, we focused on plasticity-related gene 1 (Prg1). Prg1 expression induced by Math2 was confirmed in cultured rat cortical cells and PC12 cells analyzed by real-time quantitative PCR. In the promoter region of rat Prg1, we identified four E-boxes [designated -E1 to -E4 (CANNTG)] recognized by the basic helix-loop-helix transcription factor. Using chromatin immunoprecipitation assays, we found that Math2 directly bound to at least one of these E-boxes. The Prg1 reporter assay showed that -E1 was critical for the regulation of Math2-mediated Prg1 expression. Investigation of the functional roles of Math2 and Prg1 in PC12 cells revealed that 72 h after transfection with either Math2 or Prg1, neurite length and number were significantly induced. Co-transfection with Prg1-siRNA completely inhibited Math2-mediated morphological changes. Our results suggest that Math2 directly regulates Prg1 expression and that the Math2-Prg1 cascade plays an important role in neurite outgrowth in PC12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2008.05579.xDOI Listing

Publication Analysis

Top Keywords

basic helix-loop-helix
12
helix-loop-helix transcription
12
transcription factor
12
prg1 expression
12
pc12 cells
12
math2
10
prg1
9
cultured rat
8
rat cortical
8
cortical cells
8

Similar Publications

Background: To investigate SCL/TAL 1 interrupting locus ()'s role and prognostic significance in lung adenocarcinoma (LUAD) progression, we examined and E2 promoter binding factor 1 (E2F1) expression and their impacts on LUAD prognosis using Gene Expression Profiling Interactive Analysis (GEPIA).

Methods: Functional assays including CCK-8, wound-healing, 5-ethynyl-2-deoxyuridine (EdU), Transwell assays, and flow cytometry, elucidated and E2F1's effects on cell viability, proliferation, apoptosis, and migration. Gene set enrichment analysis (GSEA) identified potential pathways, while metabolic assays assessed glucose metabolism.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

Myogenic regulator factors (MRFs) are essential for skeletal muscle development in vertebrates, including fish. This study aimed to characterize the role of () in muscle development in Nile tilapia by cloning from muscle tissues. To explore the function of , CRISPR/Cas9 gene editing was employed.

View Article and Find Full Text PDF

The role of heart and neural crest derivatives-expressed protein factors in pregnancy.

Biochim Biophys Acta Mol Basis Dis

December 2024

National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China. Electronic address:

Heart and neural crest derivatives-expressed protein 1 (HAND1) and Heart and neural crest derivatives-expressed protein 2 (HAND2), members of the Twist-family of basic Helix-Loop-Helix (bHLH) proteins, act as critical transcription factors that play a key role in various developmental processes, including placental development and fetal growth during pregnancy. This review aims to explore the current understanding of HAND1 and HAND2 in pregnant maintenance and their potential implications for maternal and fetal health. We will summarize the mechanisms of action of HAND1 and HAND2 in pregnancy, their expression regulation and association with pregnancy complications such as preterm birth and preeclampsia.

View Article and Find Full Text PDF

Both the upper and lower jaws develop from cranial neural crest cells (CNCCs) populating the first pharyngeal arch in all gnathostomes. Previous studies showed that the Edn1/Ednra-Dlx5/Dlx6-Hand2 signaling pathway is necessary for lower jaw formation and that ectopic expression of or throughout the CNCCs partly transformed the upper jaw to lower jaw structures, but the molecular mechanisms regulating upper jaw development remain unclear. Here we show that the basic helix-loop-helix transcription factor Twist1 is required for upper jaw development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!