Beyond two dark energy parameters.

Phys Rev Lett

Department of Physics and Astronomy, University of California, Irvine, California 92697, USA.

Published: June 2008

Our ignorance of dark energy is generally described by a two-parameter equation of state. In these approaches, a particular ad hoc functional form is assumed, and only two independent parameters are incorporated. We propose a model-independent, multiparameter approach to fitting dark energy and show that next-generation surveys will constrain the equation of state in three or more independent redshift bins to better than 10%. Future knowledge of dark energy will surpass two numbers (e.g., [w{0},w{1}] or [w{0},w{a}]), and we propose a more flexible approach to the analysis of present and future data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.241302DOI Listing

Publication Analysis

Top Keywords

dark energy
16
equation state
8
dark
4
energy parameters
4
parameters ignorance
4
ignorance dark
4
energy generally
4
generally described
4
described two-parameter
4
two-parameter equation
4

Similar Publications

Background: Due to the low contrast between the vascular lumen and vessel wall, conventional computed tomography (CT) is not an effective method for visualizing the vessel wall. The purpose of this study was to assess the feasibility of vessel wall visualization using contrast-enhanced dual-energy CT (DECT)-derived water-calcium material decomposition (WMD) and subtraction-based dark-blood imaging (DBI). An additional objective of this study was to determine the association of descending aorta wall thickness (WT) and wall area (WA) with cardiovascular disease (CVD) risk factors and to ascertain the potential of DECT-derived WT and WA as image markers for identifying individuals at high risk for future CVD.

View Article and Find Full Text PDF

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

Large-scale commercial-grade volatile fatty acids production from sewage sludge and food waste: A holistic environmental assessment.

Environ Sci Ecotechnol

January 2025

CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.

The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations.

View Article and Find Full Text PDF

Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!