Mechanical equivalent of quantum heat engines.

Phys Rev E Stat Nonlin Soft Matter Phys

Mas Liron, F30440 Saint Martial, France.

Published: June 2008

Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.061102DOI Listing

Publication Analysis

Top Keywords

quantum heat
20
heat engines
20
working agents
8
heat
6
quantum
5
engines
5
mechanical equivalent
4
equivalent quantum
4
engines quantum
4
engines employ
4

Similar Publications

Ester collectors have rapidly developed into the main flotation collectors for copper sulfide minerals since they were developed. In this study, the collecting performance of four collectors, O-isopropyl-N-ethyl thionocarbamate ester (IPETC), 3-pentyl xanthate acrylate ester (PXA), O-isobutyl-N-allyl-thionocarbamate (IBALTC), and O-isobutyl-N-isobutoxycarbonyl-thionocarbamate (IBIBCTC), was investigated through microflotation tests, microcalorimetric measurements, and quantum chemical calculations. The results of the microflotation tests show that IBALTC and IPETC have stronger collecting abilities than IBIBCTC and PXA; the order of collecting ability is IBALTC > IPETC > IBIBCTC > PXA.

View Article and Find Full Text PDF

Emergent symmetries in prethermal phases of periodically driven quantum systems.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, Kolkata, West Bengal, 700032, INDIA.

Periodically driven closed quantum systems are expected to eventually heat up to infinite temperature ; reaching a steady state described by a circular orthogonal ensemble (COE). However, such finite driven systems may exhibit sufficiently long prethermal regimes; their properties in these regimes are qualitatively different from that of their corresponding infinite temperature steady states. These, often experimentally relevant, prethermal regimes host a wide range of phenomena; they may exhibit dynamical localization and freezing, host Floquet scars, display signatures of Hilbert space fragmentation, and exhibit time crystalline phases.

View Article and Find Full Text PDF

Raman signatures of inversion symmetry breaking structural transition in quasi-1D compound, (TaSe4)3I.

J Phys Condens Matter

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.

The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.

View Article and Find Full Text PDF

Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD).

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!