Aggregation and fragmentation dynamics of inertial particles in chaotic flows.

Phys Rev E Stat Nonlin Soft Matter Phys

Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany.

Published: May 2008

Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon collision. The new particles formed in this process are larger and follow the equation of motion with a new parameter. These particles can in turn fragment when they reach a certain size or shear forces become sufficiently large. The resulting system consists of a large set of coexisting dynamical systems with a varying number of particles. We find that the combination of aggregation and fragmentation leads to an asymptotic steady state. The asymptotic particle size distribution depends on the mechanism of fragmentation. The size distributions resulting from this model are consistent with those found in raindrop statistics and in stirring tank experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.055301DOI Listing

Publication Analysis

Top Keywords

inertial particles
12
aggregation fragmentation
8
chaotic flows
8
particles
6
fragmentation dynamics
4
dynamics inertial
4
particles chaotic
4
flows inertial
4
particles advected
4
advected chaotic
4

Similar Publications

The working performance of the discrete functional surface is affected by the surface form. Both the surface form and the geometric function should be considered in tolerance design. However, the tolerance of different parts has different influence on the geometric function and surface form.

View Article and Find Full Text PDF

CFD Analysis of Particle Dynamics in Accelerated Toroidal Systems for Enhanced PIVG Performance.

Micromachines (Basel)

November 2024

Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.

This study investigates the movements of particles in an accelerated toroidal flow channel filled with water, with specific applications for a particle imaging velocimetry gyroscope (PIVG). We used computational fluid dynamics (CFD) to simulate particle behavior under different angular accelerations. These angular accelerations were 4 rad/s, 6 rad/s, and 8 rad/s for particles densities of 1100 kg/m, 1050 kg/m, and 980 kg/m.

View Article and Find Full Text PDF

Mechanisms behind the surprising observation of supra-thermal ions in NIF's fusion burning plasmas.

Sci Bull (Beijing)

December 2024

Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:

Although ignition had been achieved at the National Ignition Facility (NIF), recent observations of the experiments indicate novel physics that beyond theoretical predictions emerge, e.g., the neutron analysis of experiments has revealed deviations from the Maxwellian distributions in ion relative kinetic energies of burning plasmas, with the surprising emergence of supra-thermal deuterium and tritium (DT) ions that fall outside the predictions of macroscopic statistical hydrodynamic models.

View Article and Find Full Text PDF

In this paper, we introduce a computational technique for modeling heterogeneous thermoresponsive hydrogels. The model resolves local fluid-solid interactions in hydrogel pores during the deswelling process. The model is a Lagrangian particle-based technique, which benefits from computational grids that represent polymer beads inside hydrogel scaffolds.

View Article and Find Full Text PDF

Asymmetric limit cycles within Lorenz chaos induce anomalous mobility for a memory-driven active particle.

Phys Rev E

November 2024

Ecole Nationale Supérieure de Génie Mathématique et Modélisation (ENSGMM), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Republique du Bénin.

On applying a small bias force, nonequilibrium systems may respond in paradoxical ways such as with giant negative mobility (GNM)-a large net drift opposite to the applied bias, or giant positive mobility (GPM)-an anomalously large drift in the same direction as the applied bias. Such behaviors have been extensively studied in idealized models of externally driven passive inertial particles. Here, we consider a minimal model of a memory-driven active particle inspired from experiments with walking and superwalking droplets, whose equation of motion maps to the celebrated Lorenz system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!