Mycotoxin and Aspergillus flavus levels in soil-surface corn debris left by no-till agriculture methods (stover, cobs, and cobs with grain) were determined during the December-March fallow period for near-isogenic Bt and non-Bt hybrid corn. By December, average mycotoxin levels in non-Bt corn were many times higher in cobs with grain than in grain harvested in September (total aflatoxins, 774 vs 211 ng/g; total fumonisins, 216 vs 3.5 microg/g; cyclopiazonic acid, 4102 vs 72.2 microg/g; zearalenone, 0.2 vs < 0.1 microg/g). No trichothecenes were detected. Levels of mycotoxins and A. flavus propagules were approximately 10- to 50-fold lower in cobs without grain and stover, respectively, for all mycotoxins except zearalenone. Mycotoxin levels in corn debris fractions decreased during winter but began to rise in March. Levels of all mycotoxins and A. flavus propagules were lower in harvested grain and debris from Bt than non-Bt corn, but differences were significant (p < 0.05) only for aflatoxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf801771a | DOI Listing |
J Econ Entomol
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, the Vernon G. James Research and Extension Center, Plymouth, NC, USA.
Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Department of Entomology and Acarology, Luiz de Queiroz Agricultural College (ESALQ), University of São Paulo, Piracicaba, Brazil.
Background: Different approaches have been adopted to manage Spodoptera frugiperda resistance to Bt toxins. However, studying the synergism among these practices applied directly in crop fields is a major challenge. We used a computational model to investigate how the proportion of refuge strips [crop area occupied by non-Bt corn (maize): 5%, 10%, 15%, or 20%] and the presence of naturally occurring parasitoid, affected or not by a pesticide with different selectivities applied in the field, could influence the dynamics of the resistance allele (R) in a S.
View Article and Find Full Text PDFInsects
November 2024
Centre for Agriculture and Bioscience International (CABI) Latin America and Fundação de Estudos e Pesquisas Agrícolas e Florestais (FEPAF)-Avenida Universitária, 3780, Botucatu 18610-034, SP, Brazil.
The use of egg parasitoids in Augmentative Biological Control (ABC) is a highly effective strategy within the integrated pest management (IPM) of lepidopteran defoliators. Safer than chemical insecticides, these natural antagonists have demonstrated significant efficacy. and , known for their high parasitism rates, are the most extensively used and studied parasitoids for controlling economically important lepidopterous in crops such as soybean and maize.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
Western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is a major pest of maize in the United States. Transgenic maize producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been used to manage this pest since 2003. Refuges of non-Bt maize have been used to delay resistance to Bt maize by western corn rootworm, and are planted in conjunction with maize producing single or multiple (i.
View Article and Find Full Text PDFPest Manag Sci
February 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!