In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf8005678 | DOI Listing |
Front Bioeng Biotechnol
November 2024
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
Reducing total nitrogen (TN) presents a significant challenge for numerous wastewater treatment facilities. In order to address this issue, the current study employed a biological aerated filter for the treatment of wastewater containing low nitrogen concentrations. Both lab-scale and pilot-scale biofilters were constructed to investigate the denitrification performance and maximum denitrification load.
View Article and Find Full Text PDFSci Total Environ
November 2024
Engineering Department, ECT - School of Science and Technology, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal; CQ-VR, University of Trás-os-Montes and Alto Douro University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
Water is essential at various stages of winemaking, from irrigation in the vineyard to cleaning equipment and facilities, controlling fermentation temperatures, and diluting grape juice if necessary. Additionally, water is used for sanitation purposes to ensure the quality and safety of the final product. This article provides an overview of the existing knowledge regarding the use of water in wineries throughout the winemaking process, water consumption values, effluent treatment, efficient use of water measures, and water reuse.
View Article and Find Full Text PDFJ Environ Manage
September 2024
Department of Chemical and Materials Engineering, Complutense University of Madrid, Av. Complutense S/N, 28040, Madrid, Spain. Electronic address:
This study proposes liquid-liquid extraction (LLE) for the recovery of phenolic acids from winery wastewater replacing common volatile organic compounds (VOCs) with environmentally friendly solvents. On one hand, terpenes (α-pinene and p-cymene) and terpenoids (eucalyptol and linalool) were selected as green solvents and compared to common VOCs (ethyl acetate or 1-butanol). On the other hand, gallic acid (GA), vanillic acid (VA), syringic acid (SA) and caffeic acid (CA) were selected as phenolic acids to be recovered.
View Article and Find Full Text PDFChemosphere
September 2024
Department of Civil and Environmental Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, United States.
The conversion of biomass to bioenergy is one of the approaches to creating a sustainable society. In this study, the life cycle assessment and the net energy analysis of converting mixed sewage sludge and beverage waste into bioenergy via a combined hydrothermal liquefaction-anaerobic digestion (HTL-AD) system was carried out. Primary sludge (PS), winery rose lees (RL), brewery Trub (BT), the mixture of brewery trub and primary sludge (BTPS) and the mixture of winery rose lees and primary sludge (RLPS) were the feedstocks considered.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2024
Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!