AI Article Synopsis

  • Ethylene-responsive factors (ERFs) are important transcription factors in plants known for their role in defense responses, but their function in potatoes is less understood compared to Arabidopsis.
  • Overexpressing the CaPF1 gene from pepper in potato plants enhances their tolerance to various stresses like freezing, heat, and heavy metals.
  • Additionally, while CaPF1 leads to increased stress tolerance, it also delays the formation of microtubers in these potato plants.

Article Abstract

Ethylene-responsive factors (ERFs) are plant-specific transcription factors, many of which have been linked to plant defense responses. However, little is known about the functional significance of ERF genes in potato plants compared to the model plant species Arabidopsis. We show here that overexpression of CaPF1, an ERF/AP2-type pepper transcription factor gene, effectively increased tolerance to freezing, heat, heavy metal, and oxidative stress in potatoes. Interestingly, CaPF1 was involved in tuber formation in potato plants. The time course of microtuber formation was significantly retarded in potato plants that overexpressed CaPF1 compared with wild-type potato plants. Overall, the results of the present study indicate that the pepper transcription factor gene, CaPF1, is involved in promotion of multiple stress tolerance and retardation of in vitro tuberization in potato plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-008-0782-5DOI Listing

Publication Analysis

Top Keywords

potato plants
20
vitro tuberization
8
pepper transcription
8
transcription factor
8
factor gene
8
capf1 involved
8
potato
6
capf1
5
plants
5
ectopic expression
4

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Fusarium sambucinum causes dry rot disease and postharvest storage losses in potatoes. Understanding the defense mechanisms of potato plants may lead to the development of rational disease control approaches. In the present study, "Kexin one" potato variety was infected with F.

View Article and Find Full Text PDF

Efficient detection of eyes on potato tubers using deep-learning for robotic high-throughput sampling.

Front Plant Sci

December 2024

Center for Precision and Automated Agricultural Systems, Department of Biological Systems Engineering, Washington State University, Prosser, WA, United States.

Molecular-based detection of pathogens from potato tubers hold promise, but the initial sample extraction process is labor-intensive. Developing a robotic tuber sampling system, equipped with a fast and precise machine vision technique to identify optimal sampling locations on a potato tuber, offers a viable solution. However, detecting sampling locations such as eyes and stolon scar is challenging due to variability in their appearance, size, and shape, along with soil adhering to the tubers.

View Article and Find Full Text PDF

Blue honeysuckle (Lonicera caerulea L.) has been widely used in food, medicine, health products, cosmetics, materials, and other products. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 20% of blue honeysuckle plants of the 'Lanjingling' cultivar grown in a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!